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Random initial conditions and nonlinear relaxation

John L Cardy
Depariment of Physics, University of California, Santa Barbara CA 93106, USA

Received 2 September 1991

Abstract. We study the effect of randomness in the initial conditions on the deterministic
diffusion equation with nonlinear terms. Physically, this describes, among other things,
the time development of a system quenched from a high temperature to the vicinity of
the critical point, in the approximation where the effects of thermal noise are neglected.
We consider the case of a non-conserved order parameter with O(n) symmetry, and show
that the nonlinearities are irrelevant for the large time behaviour for dimension d > 2.
The model is investigated for d < 2 using the renormalization group and ¢-expansion.
It is found, to all orders in ¢, that the local fluctuations in the order parameter scale like
t~1/2 and have a universal distribution. The time dependence of the response function,
describing the dependence on the initial condition, is characterised by another exponent
which is computed to O(e?). These results are checked in the exactly soluble cases of
n—ooand d =20,

1. Introduction

Nonlinear relaxation processes ar¢ found in many areas of physics, chemistry and
biology. In the generic case, the effect of the nonlinearities is qualitatively unimpor-
tant for the large time behaviour, which exhibits the usual kind of exponential decay
characterized by a finite relaxation time scale. Under such circumstances, any ran-
domness present in the initial conditions tends also to be suppressed exponentially,
and leads to no qualitative differences in the large time behaviour. However, when
the nonlinearities dominate, the exponential behaviour is typically modified to that of
a power law. In such circumstances, as we shall show, initial state randomness may be
very important, and lead to strong qualitative differences in the long time properties.
The manner in which this comes about is analogous in many ways to the behaviour of
critical fluctvations close to a second-order phase transition, and the methods we use
in this paper follow closely those of the renormalization group so successfully applied
in the Jatter class of problems.

For the case of a system described by a single space and time-dependent field
¢(z,t) (referred to, by analogy with critical phenomena, as the order parameter), we
consider nonlinear relaxation processes governed by a deterministic equation of the
form

8¢ _ _6F .
T ®

where F'{¢} is some functional, which, by the form of the equation, is non-increasing
as a function of time. Throughout most of this paper, we consider the following
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specific form for F
F= [[5(V6) + 16 + 1ro¥] ¢ @)

although, as will be shown, many of the results are universal and do not depend
on the detailed form. When r # 0, the long time relaxation is exponential, with
a characteristic time ~ r~!, but when r = 0, this is replaced by a power law.
This is the analogue of the critical point. Even when r is small, we expect the
nonlinearities to dominate intermediate times and lead to effective power laws in that
regime. Equation (1) is completely deterministic and carnot by itself lead to the kind
of non-trivial power law decays associated with true critical phenomena. However,
we also suppose that the initial condition ¢(z,0) is a random variable, with some
strength characterized by a parameter A. For example, it could have a white noise
distribution with ¢(z,0)¢é(z’,0) = Ads(z — =’'). Once again, we shall show that
universality implies that the precise details of this distribution are not important.
Then it will turn out that this system, although deterministic for ¢ > 0, can exhibit
non-trivial critical behaviour at » = 0.

The only stochastic aspect of the problem so far considered is the randomness
in the initial condition. When a random noise term n(x, t) is added to the right-
hand side of equation (1), it becomes the usual time-dependent Landau-Ginzburg
equation used to describe dynamic critical phenomena [1, 2]. In that case, F is
simply the coarse-grained free energy (in units of kg 7'}, and the noise # represents
the effect of thermal fluctuations on scales smaller than that of the coarse-graining. It
is usually chosen also to have a white noisc distribution, satisfying n(z, t)n(z’,t') =
2D6(w — «')6(t —t'). The principle of detailed balance applied to small fiuctuations
in the equilibrium state then implies that D == . When the thermal noise is present,
we would expect it to wash out the effects of the randomness in the initial conditions
on a relatively short time scale. For example, if this randomness resuits from a quench
from a relatively high temperature to the vicinity of the critical point, one may show
(see appendix A) that A ~ R? where R is the range of the interaction. Thus the
ratio A/ D of the initial noise to the thermal noise gives rise to a characteristic time
~ R?/D. When detailed balance is satisfied, this becomes R?/. This is typically a
microscopic time. It is to be compared with the relaxation time close to T, which is
~ £2 /T, where the correlation length ¢ is always larger than R, and diverges at 7.

The relative unimportance of the initial state randomness for equilibrium phe-
nomena appears in the renormalization group approach as a consequence of the
parameter A being strongly irrelevant at the fixed point, with D # 0, which de-
scribes conventional critical dynamics. However, as shown by Janssen ef af [3] and by
Humayun and Bray [4], this irrelevant operator leads to a new non-trivial exponent
governing the response function describing the dependence on the initial conditions
of quantities at large times. (See also Huse [5].) This is not the case studied in this
paper. Instead, we are interested in the fixed point where D = 0.

In order to realize such a situation, it is clearly necessary to consider systems in
which detailed balance is viblated, and the effects of thermal noise are negligible.
There are many systems, for example those maintained in a steady non-equilibrium
state by some external driving force, for which this can be a reasonable approximation,
and we expect our analysis to be applicable in such cases.

Even when the effects of initial noise are important, there remains the question of
how they are affected by the nonlinearities in the system. For the thermal fluctuations,
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this question is answered by the Ginzburg criterion, which implies, for an ordinary
critical point, that for dimension d > 4 such nonlinearities are irrelevant, while for
d < 4 they are important sufficiently close to the critical point. We shall show in
this paper that, for the case of a non-conserved order parameter, the corresponding
critical dimension for nonlinearities to influence the effects of the initial randomness
is d, = 2. This means that, for d > 2, the large time fluctvations deriving from
the initial state randomness are Gaussian in character. However, for d < 2 this is
not the case. The behaviour for d < 2 may be investigated within an expansion
in € = 2 — d. There turns out to be a remarkable universality in the spectrum of
large time fluctuations in this case. The equal time order parameter fluctuations
all scale like t~1/2, with an exponent independent of d. However, they are not
normally distributed. The distribution of the local order parameter scaled by t!/2
has a universal form which becomes increasingly bimodal in shape as d is decreased
below two dimensions. The equal time correlations also attain universal forms in
the large time limit. The response function, which gives the response of the order
parameter at large ¢ to a change in the initial conditions, has a time decay of the
form t~(#*+7i}/2 We have computed the exponent v} to second order in e. This
universal behaviour is insensitive to small modifications in the forms of both the
functional F* and the distribution of initial state fluctuations. These modifications
give risc to perturbations which are irrelevant in the sense of the renormalization
group. The exponents characterizing these corrections are computed for the most
important perturbations.

Unlike the case of thermal fluctuations, which destroy the low-temperature or-
dered phase for sufficiently low dimension d, the initial state randomness, since it
ultimately decays away, cannot influence the behaviour of the system at very large
times. Thus, with the neglect of thermal fluctuations, there is no lower critical dimen-
sion for this problem, and there should be non-trivial behaviour all the’ way down to
d = 0. Since the problem is easily soluble in this case, this forms an important check
of our e-expansion results. In addition, when generalized to an n-component order
parameter, the model turns out to be exactly soluble in the n — oo limit for all d.
This forms a further check on our calculations.

The model we consider has been used extensively in studying the effects of a
quench from a high temperature into the ordered phase [9). In that case, randomness
in the initial state is dissipated by the motion of domain walls. We should stress that
in this paper we consider exclusively the case of a quench to a wemperature at, or
just above, the critical temperature, when the slowness in the dynamics is a result of
the critical slowing down of local fluctuations. In principle, it would be necessary to
combine both types of analysis, as well as incorporate the effects of thermal noise, in
considering a quench to just below the critical temperature.

The layout of this paper is as follows. In the next section we develop the field
theory formulation of this problem and the diagrammatic expansion used in its analy-
sis. Then, the model is solved in a self-consistent, Hartree-like approximation, whose
results are prototypical of what is expected for the full theory. The next section con-
tains the main results of the paper. We develop the renormalization group program
for this model, and compute the renormalization group functions to 2-loop order.
We show how the structure of renormalization in the theory leads to results for one
exponent which are exact to all orders in ¢. The following section is devoted 10 a
comparison with exact results obtained in ¢ = 0 dimensions. Finally, we summarize
our conclusions and make some further remarks concerning generalizations of this
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work and potential applications to other types of dynamical systems.

2, Field theory formulation
As described in section 1, we are interested in solving the partial differential equation

3¢ = -T{-Vi¢+ ro+ A¢®) (3)

with the initial condition ¢(x,t) = ¢(x,0), where the ¢(z,0) are random variables
drawn from a probability distribution satisfying &(x,0) = m, &(z,0)¢(z’,0) =
m? + Aé(m —z'). In pn'ncip]c the delta function could be replaced by some short-

Fuanrtin nd tha ulan 11d alan ha tal-a
lﬂllE\du l.l-lll\fl-lull, auu (%11 lllsll\'l \-Ullll-llallw wu:u 4y vw Idhbl.l UIII.U awulll, Uul., ﬂ

will be discussed later, these modifications are irrelevant for the universal properties
of the critical behaviour.
When A = 0, equation (3) is the diffusion or heat equation, with solution

qs(z,t):/ Golz — &', ) (', 0) d%z 4)

where Gy(z,t) = [e T+t ddq/(2r)4. Since the equation is linear, if ¢(x,0)
has a Gaussian distribution, so does ¢(z,t) for ¢ > 0. The mean order parameter
¢(x,t) does not decay in this approximation at the critical point r = 0, and the
equal-time correlation function is

o(zy, ) P(z,, 1) ~ q‘)(a:,i)z =A j Go(z, — 2/, 1) Gy(xy — 2/, 1) déz'

d q
J— -“2F l Ty=T2

Note, in particular, that in this case the local fluctuations ¢(z, )2 — m? behave like
~ t_dlz_

<

Figure 1. Trec diagrams representing the perturbative solution of equation (3). Each
vertex camries a factor of —A.

When A # 0, the solution of equation (3) may be obtained iteratively as a
perturbation expansion in A. Each term in the expansion may be represented by a
tree diagram in which each propagator corresponds to the Green function G, and
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each vertex to the interaction —A. The result is a set of tree diagrams, the first few
of which are shown in figure 1. For example, the second diagram gives a contribution

t
—A/ dt’fddw’dd:nl diz,d%z,Gy(z — 2',t — t')
0

X Golx'—2,, '} Gy(' — 4, ') Gy’ —z4, 1) p(2,,0)$(24,0)$(3,0)
(6)

to ¢(x,t). On averaging over the ¢(x;,0) with the above distribution, some of the
free ends at ¢ = O are sewn together in pairs, with an associated factor of A for each
pair. The remaining ends each carry a factor of m. Similarly, one may represent
other averages, such as the correlation function ¢(z, t)é(z’, t’), graphically. Another
important quantity is the response function, defined as §¢(z,t)/8¢(«’,0). This is
given by a sum of similar diagrams, with the end at (z,0) left free. The first few
diagrams contributing to the response function in the case m = 0 are shown in
figure 2.

{a) (b) {c}

(d) (e)

Figure 2. Diagrams, up o 2 loaps, contribuling to the response function G¢-§' All
closed loops terminate at ¢ = 0 with a factor of A.

Since the problem, after averaging, possesses translational invariance in space, it
is convenient to evaluate diagrams in the {g,t) representation, in which everything
is Fourier transformed with respect to z. In that case, the propagator is simply
e~Tla™+™) and each line carries a ‘momentum’ g which is integrated over, subject
to being conserved at the vertices. The vertices are time-ordered, and integrals are
performed over these intermediate times subject to this constraint. In addition, each
diagram carries a symmetry factor, corresponding to the number of ways it can be
derived following the above procedure of iterating the equation and sewing together
the initial ends. While it is possible to give a general rule for this factor, in practice
it is straightforward, and more reliable, to derive it from first principles. In some
cases it is also convenient to work in the (g,w) representation, Fourier transforming
also with respect to t. Because of the initial condition, however, the problem is not
translationally invariant in time, and such a representation is useful only in evaluating
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correlation functions depending on just one or two time coordinates. For example,
when evaluating the response function, we may Fourier transform with respect to ¢
and evaluate dlagrams in time-ordered perturbation theory, assigning a propagator
(—iw+3;(¢?+7))"" to each intermediate state consisting of lines carrying momenta
;-

This set of Feynman rules leads to divergences in some of the integrals, which will
be analysed later, and which play a crucial role in the renormalization group analysis.
They may be removed by rcplacing the é-function correlations in the initial condition
by something smoother, but it is more practical to regularize them either by i nnposmg
a cut-off |¢| < A in all internal momentum integrals, or by analytic continuation in
the spatial dimension d.

These diagrammatic rules may also be derived from an action in a manner similar
to that used for studying dynamical critical phenomena [6, 7]. Egquation (3) may

ha nncad unth funntinnal daltn fince rl arerilin
U uul:wvu Wil @ IUNCLCHar uulm LU AW uuu, lllllwu\/llls an awuualy lCBPUllaC IICIU

#(z,1)

fv&?wexp ([ d?z dtg («f>+ [(~V2p+ ro + Ao?)

\-_-/
o~~~
~J
~

When X = 0, {$(z,t)¢(z',0)} is just the bare response

n
In general, a tree diagram for ¢(x,t) with ends at (ml,:cg,...) corresponds to
(#(z,t)P(x,,0)d(2,,0)...) evaluated with respect to the measure in equation (7).
Thus, the average over the initial conditions ¢(z,0) may be implemented by integrat-
ing over ¢(x,0) with a Gaussian weight factor. The result is that the full response
function is

Gyi(z,1) = (¢(2,)(0,0)) ®)
and the correlation function is
Gapl(@y,t5 29, 5) = (@), 1) )d(xq, 15)) )
where the averages {.) are computed with respect io the weight e, and
fd‘xd ?5 ¢+ I(-Vp+ ré+ A¢3)) ]d"w(m,O)
- %Afddm(m,())?. (10)

Note that this differs from the usual functional integrai formalism of critical dynamics
[6, 7] only in that the last two terms are localized to the ¢t = O time slice.

In this form, the problem resembles that of the equilibrium statistical mechanics
of a semi-infinite system, where the dimensicn normal to the boundary is time i
By analogy with such systems [10], we should expect that the critical behaviour of
the quantities determining the ‘bulk’ behaviour for ¢ > 0 should not depend on
the boundary terms, but that the critical behaviour of correlation functions involving
boundary fields may depend on both the bulk and the boundary terms. Since in
this case the ‘bulk’ behaviour corresponds to the fully deterministic equation (3), we
expect that the parameters I',  and A which determine this are not renormalized
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—_——— 4 —(—2 + A—Z
+ ‘Z + 4—4

Figure 3. Diagrams surviving in the self-consistent approximation (large n limit).

+. .

in any way, but that ‘boundary’ operators such as 5(1:,0) and boundary coupling
constants such as A should undergo renormalization, leading to possible non-trivial
critical behaviour for response functions. As we shall see, with some refinements, this
picture is accurate.

The action functional equation (10) is useful for performing the dimensional
analysis which will guide the subsequent renormalization group program. In terms of
dimensions of momentum k and frequency w, we see from equation (10) that

M =wk? =2 (A=  [ml=[d] an

which indicates that the true expamsion parameter is AA, with dimension k%-¢,
This suggests that d = 2 is the upper critical dimension for this problem, since for
d < 2 higher order terms in the coupling constant will be accompanied by more and
more singular behaviour of the coefficients as ¢ — oo. In anticipation of the result,
suggested above, that T and A are not renormalized, we may rescale the fields so that
they are both set to unity. We then have the following list of engineering dimensions:

Bl=k [d=k""' [A]l=k?  [m]=k. (12)

The last result shows that the symmetry-breaking parameter is relevant, and should
be expected to modify the large-time behaviour in a manner similar to that of a surface
magnetic ficld.

3. Self-consistent calculation

Before going into the details of the renormalization group analysis, we first describe
a self-consistent approximate solution to the problem. A similar analysis has been
made for the case when thermal noise is included [3], and for a quench down to zero

tnmtriavntnea 13T Thic imunluee vanlacinng tha nanlinaar 43 tarm in snnatinn 72% e
WCMPETatuic [1of 14D MVOYLS TUPIGLIGE Uit HUNNCAal @7 Wi i Squauon (J) oy

3¢2. ¢, thus rendering the equation linear, albeit now time-dependent, and calculating
¢%(t) selfconsistently. When m = 0, this approximation is equivalent to summing
the set of diagrams shown in figure 3. As will be shown later, this becomes exact in
the large n limit, with the replacement 3 — n 4 2.
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The solution of the differential equation has the form

#z,) = [ Goolz - 2',)8(a',0) a4 (13)

where the Fourier transform of the self-consistent response function satisfies the
integral equation

i
Gsc(q,t)ze-(4’+f)f—3f e-(q’+’">(*-")qs(t)zcsc(q,t')dt'. (14)
1]

From the form of this equation it is clear that Gg has the functional form

Gsc(a,t) = e @+ (1) (15)
so that

— d F

FOP = F)* | oo @0 (mA(2m)46(q) + 4) (16)

Hence F(t) satisfies the simple integral equation

t s A
F(t)=1- 3]0 eIt (m'-’ + W) F("? dt' 17
the solution of which is of the form
-2 i 2rt’ 2 A '

The role of d = 2 is apparent in this expression. For d < 2 the perturbation
expansion is well-behaved in the small-time limit, and we may take the lower limit of

- the ¢’ integration to be zero. For d > 2 this is no longer true. An analysis of the
diagrams in figure 3 shows that they are finite with a momentum cut-off |k| < A if
the time integrations are performed first. Since we have not done this, it is necessary
instead to cut off the integral in equation (17) at ¢ ~ A~'/2, With this in mind, it
is possible to analyse the large t behaviour of the solution. For r > 0, we see that
F(t) — constant, so that Gg; behaves essentially as in the non-interacting case, with
exponential decay of the initial state fluctuations. At the critical point » = 0, we see
that, for m = 0 and d < 2, F{{) has the form

1
F(t) = ~ /A (19)
(1 + constantAt1-4/2)!/?

where d = 2 — e, It is interesting to compute the equal-time correlation function,
which, in the same approximation, is given in g-space by AGgc(q,1)% In particular,
we see that

- 2, d¢
Pz, )7 ~ AF(t)zfe""‘? 'm‘;—d ~ % (20)
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Later we shall show that this hyperuniversal exponent, independent of d for d <
2, is a general feature and not limited to this approximation. It is interesting to
compare this result with the non-interacting case which gives t-%/2, The amplitude
in equation (20) will also be shown to be universal, and correct to first order in e.

Next, consider the case when r = 0 but m # 0, so that the initial conditions
break the symmetry on average. Then we see that F(t) ~ 1/(mt!/2), and the
fluctuations are relatively less significant. However, there is an intermediate regime
described by a scaling form

F(1) ~ 1=/1y (m%d”/A) @1)

where ¥ (u) = (14 constantu)~1/2, This illustrates that m acts as a relevant variable
with crossover exponent Ld.

Another quantity of interest is the response function {¢(«, (', t,)) for t, > 0.
It satisfies a similar integral equation to that for Ggc, and its Fourier transform has
the form, at criticality, e=¢"(t=t} F(¢; ty), where now

_ A CE(2F(t; 1)
F(t:t,) = 1_(81r)d/2 /tu a7 d+'. (22)

The solution is
t
F(t;1,) = exp -(A/(S‘.'r)d”)j ¢~ E(? at! 23)
to

and, on substituting the exact form for F(t'), we find that

t (d‘2)/4
F(t;t,) = (t_) .
0

(29
Thus, F(1;1,) has the same behaviour as 1 — oo at fixed 1, as does F(1); however,
it has a different overall dimension, and its limit as t; — 0 is not F(t). This is an
example of the different renormalization effects for ¢ = 0 and ¢ > 0, in analogy with
surface critical behaviour [10], which will be commented upon later.

Finally, in the low-temperature phase r < O we see from equation (17) that -
F(t)=% ~ (m? + O(1~#?))e?"l* as t — oo, so that the leading behaviour of the
bare term is cancelled, and

—g2t s 0
G )~ de 7 if m# 25
sla ) {td,4e_q,, m#o 25)

This implies that for m = 0 the response function (¢(=, t)é(z,0)) has a slow ¢—¢/4
decay, presumably reflecting the slow diffusion of domain walls. However, the local
fluctuations ¢(zx,t)? ~ %, as expected in an ordered phase.
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4. Renormalization group analysis

4.1. Analysis of divergences

We begin the renormalization group program by making an analysis of the divergences
occurring in perturbation theory [8]. A general correlation function of non-composite
fields has the form

(B(2), 1))z ta) - B2 1) - (s, 1) (2o 1)) - .. By, 1, )}26)

calculated with respect to the action equation (10). Without lack of generality, we may
assume that all the arguments %; of the fields ¢ are strictly positive. It is convenient
to work in the (g,t) representation, since the bare propagator is then dimensionless,
and the power counting of divergences is simpler. We first identify the primitively
divergent diagrams, that is those divergent diagrams with no divergent subdiagrams,
using dimensional analysis. From equation (12) we see that the Fourier transform of
the above correlation function has dimensions

k. pmtmid Ll pm(d-1} _ pd-(d-1)I-m @n

where the first factor comes from factoring out an overail momenium-conserving deita
function, and the second from the Fourier integrals. If this correlation function is
then expanded in powers of A, the Feynman integrals contributing to the coefficient
of A™ will have dimension k%, where

= kd—(d—])f—m-l—(d—Z)ﬂ' (28)

When § is positive, the corresponding diagram is potentially divergent, with the appro-
priate power of the cut-off A. For d > 2 we see that, no matter what the values of {
and m, arbitrarily high powers of A appear, indicating that the theory is not renormal-
izable, or, equivalently, that A is irrelevallt for the large t behaviour. For the marginal
case d = 2, 6§ < 0 except for (¢(x,t)d(z', 1)) and Gy = (D2, 1;)d(zy,15))-
This implies that these are the only correlation functions with primitive divergences.
This dimensional argument assumes that the divergence is arising from all the inter-
nal momenta of a given diagram becoming simultaneously large. Divergences may
also arise when a subset become large, but this is, by definition, a divergence in a
subdiagram and so is not primitive. We shall assume, in accordance with conventional
field theories, that renormalization of the primitively divergent diagrams is sufficient
to render all diagrams finite {3].

In fact, {¢(x,t)}d(2’, ")) is not primitively divergent for ¢' > 0. This is because
at least one of the integrations over the time of an internal vertex will have a Jower
bound of ¢/, and the associated propagator entering this vertex, carrying momentum
k, will behave at large k like e~*’t', and so will be exponentially damped. Thus, if
the diagram is divergent, this divergence must come from a subdiagram. Since this
would also apply to any correlation function of the form equation (26) in which all
the arguments ¢; and t; are positive, it follows that neither ¢(x,t) nor ¢(a: )
need any muluphcatwe renormahzanon for ¢, > 0, and that, as stated earlier,
neither will other parameters characterizing the ¢ > 0 theory, such as A and T.
Only a coupling constant renormalization is needed, in principle, to render finite the
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correlation functions with all time arguments positive. However, 5( z',0) may need
multiplicative wavefunction renormalization in its correlation functions, in addition
to coupling constant renormalization. As stated earlier, we never need to consider
correlation functions involving ¢(z,0).

We conclude that renormalization in this theory should be very simple, and that
it involves a multiplicative renormalization of ¢( z’,0) and a renormalization of A.
Although these arguments are somewhat formal, and certainly not rigorous, we shall
see that, at least to 2-loop order, they are correct. The fact that $(z’, t') renormalizes
differently for ¢’ > 0 and ¢’ = 0 is familiar from the analogous case of surface critical
behaviour [10]. In our case, the ‘bulk’ theory corresponds to a deterministic equation,
for which there can be no renormalization effects.

4.2. Two-loop calculation

Guided by the results of the last section, we now consider the diagrams contributing
to G,z and G, ,, which are the only ones containing primitive divergences. We shall
consider the critical theory, and work in d = 2 — ¢ dimensions, which will serve to
regulate all divergences.

First, consider Gy;(g,w) = [d%= dtel? el (d(z,1)H(0,0)). The diagrams
contributing to this up to two loops are shown in figure 2. The bare term is (—iw +
¢%)~1. The 1-loop contribution is that of diagram (b). It is

1 dk
hh=-3&——7 pY f T+ ¢ + 2k2

(29

where dk is shorthand for d%k/(2x)¢. The factor of 3 arises from the three ways
of pairing the end vertices of the associated tree diagram. The integral is readily
evaluated by standard methods to give

_ 5, 1 —iw + ¢? —e/2
I, = 3A (26 + O(G)) g ( 3 ) (30)

where S, = L. This factor is ubiquitous and, henceforth, will be absorbed into the
definition of the coupling constant. Similarly we find that

er 2 1 _[ dk, dk,
fo=21=95(2ma) =7 +¢* J (—iw+ g% 4+ 2k)(~iw + g% + 2k} + 2&2)
—anz( L 0 1 —iw + ¢\ "
=9A (452 +0(e”) ) — e 5 : 31)

The only non-trivial 2-loop integral is that of figure 2(e). This is evaluated in ap-
pendix B, to give

i, = ;ln 342 (51; + 0(1}) _iwl_}_ p ((“i”; qz)_e + o(e)) . 32)
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N7

(f)

Figure 4. Diagrams, up (o two loops, contributing to the corvelation function G 4e. Only
(f) is a new Feynman integral.

Next, consider

o
-n
H
E
-
‘—
£
L8

—

3

—~

B

The bare term is 27 A{~iw, + ¢?)~'(—iwy, + ¢*)™}, and the corrections vp 1o two
loops are shown in figure 4. The calculation of the first few diagrams is facilitated by
observing that

G¢¢(Qu Wy wy) = 27"AG¢.{,(‘1,"‘-’1)G¢Q§(_Q’W2) + O(Aa) (33)

with the only O(A3) correction coming from diagram ( f), which is evalvated in
appendix B to give

. Do 1 ,
R e Ul - " .
Kzf T J} (—iw; + g )(—iw, + ¢2) ¢

G F LY
34}

Since G,; and G, have only logarithmic divergences at d = 2, to renormalize
them we necd do so only at one point. It is convenient to choose this to be w, =
w, = 0 and q = x, where k is arbitrary. We may then summarize the results of the
2-loop calculation as

K- 2¢

Gy3= N-Z( - 287 -]n3A2 +O(A3)) (35)

and

9 K" 3
G,y = 27AKT ( ——-——-+(§ln3+1) Az——2—€-+0(A ))(36)
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4.3. Renormalization and € expansion

As discussed above, we expect that the whole theory, including G, ; and G, may
be rendered finite by suitably renormalizing &(t = 0) and A. Specifically, define
ér = Z;' by the condition that (¢@g) = ~~? at the normalization point w = 0,
q = x,and Ay = Z,A by the condition that (¢¢) = 2rAgr~™ at w, = w, =0,

g = . Then Z, and 22 are given by the expressions in parentheses in equations (35)
and (36) resnectwelv

It i also useful to define the dimensionless renormalized coupling by gg =
Ak~ We shall also need the renormalization group functions

9ln Z, 8In Z,
- T2 =R 37
' x| ? Ok |a
and
g
= ok |, 38
Blon) == 50, &)
Note that
A re N e oz o 20N
MAYRJ — TSYR T rz\YR) {39}
Explicitly we have
3, . 9 .k 9 —
71—25‘ QA p 4lnBA»c +
= Jon ~ §In3gp + (@)
and
n—?e
T2 = 3Ak7C —9AT— — (In3 + 1)A%T* 4 -
=39R"'(%1n3+1)gf2{+"'. (41)

Note that the fact that the renormalization group functions are finite as € — 0 when
expressed in terms of the renormalized coupling constant is an important and non-
trivial check of our assertion that coupling constant renormalization is sufficient to
render G, finite.

We now write down the Callan-Symanzik equations for G,z and G, by observ-
ing that the bare quantities do not depend on x. Thus

a :
noe (206%;) = n5— (2,05 Gy 42)
which leads to
9
(n;a— +n(9n) + B(gr) 5 \G“--O (43)
\ oK 99r/
?
(o2 + valon) + Blaw) 5= ) (872650 = 0. )
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The standard solution of these equations shows that the x — 0 limit of the
correlation functions is controlled by a value g, of gy at an infrared stable zero of
B3(gr), that is one where 3'(gr) > 0. From equations (39) and (41) we see that
such a zero, of order e, exists for e > 0. At such a fixed point,

GRi(g,w, k) ~ k™1 @5)
A;Ll ng,(ﬁbwnw-zyﬁ) ~ K‘--T; (46)

at fixed (q,w), where v} = v;(gy). Since dimensionally [Gy4(q,w, k)] = k=% and
{A1Gy4(g,wy,wy, k)] = k™4, we see that, in the (g, 1) representation,

Gy(a, ) ~ TV fi(q%t) (AT)Gyyla,t, 1) ~ AL/ f(g%) (48)

where f, and f, are scaling functions. Solving equations (39-41) we then find
explicitly that

- € €2 3
71=§+ﬁ+0(€) (49)
Y2 =« (50)

It is interesting to observe that the contribution of figure 2{e) cancels in the final
result for vf. Note also that, because of equation (39), the result for 4; is valid to
all orders in «. This has the important consequence that if we compute the exponent
governing the time dependence of the local fluctuations

Fo, 1) = j Gyy(gt,1) dlg~ 17! (51)

the same d-independent exponent as was found in the self-consistent approximation.

This result may be traced back to the fact that ¢ is not renormalized, so its
correlation functions scale with its engineering dimension [¢] = k. This implies
further that a general equal-time correlation function has the scaling form

&(z,, Ob(2y,1) ... B2, , 1) ~ T F, (Ja; = z;[t7V7) (2)

and that the random variables t!/2¢(x, t) have a joint probability distribution which
is independent of ¢, if the z-coordinates are scaled appropriately.

It is also interesting to consider the scaling behaviour of the response function
(¢(x,)$(0,¢')) for ¢ > 0. Denote its Fourier transform with respect to z by
G,;(q,1,t'). Since $(=',1') is not renormalized for ¢/ > 0, this will satisfy a Callan-
Symanzik equation similar to equation (43), but with no term involving -v,(gg)-.
Thus, there are no anomalous dimensions involved, and therefore, at fixed ¢ and #,
Gyg~ %, However, from dimensional analysis we may now conclude only that

Gyg(a,t,t') = (g%, ¢t") (3)

where P is a scaling function yet to be determined. This does not vield information
on the behaviour as ¢t — oo at fixed ¢'. In analogy with surface critical behaviour
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[10], we expect that this may be investigated by showing the existence of a short-time
expansion in which renormalized fields for ¢’ > 0 may be expressed in terms of
renormalized zero-time fields. In this case, the relevant expansion will have the form

Ba', b)) = AV Ge (2, 0) + -+ (54)
where A is some amplitude. This would imply that, for ¢'/t < 1,

Geala t, ) ~ (1) "i/2 f( 1) &)

as was found in the self-consistent approximation.

The renormalization group analysis readily generalizes to the case when m #*
0. In fact, no new renormalization constants are needed to deal with this case.
This is because m couples to ¢(¢ = 0) in the effective action, and therefore the
renormalization group eigenvalue of m at the m = 0 fixed point is simply related to
v;- The simplest way to derive this relation is to observe that, for m # 0, we expect
¢(x, 1) to satisfy the scaling law (see equation (21))

#(z,t) ~ 172 (mt™, 2% /1) (56)

where ¥ is scaling function and « is an exponent to be determined. This scaling
form may in fact be derived in the standard way [8] by expanding the left-hand side
in powers of m, each coefficient being proportional to a correlation function with
insertions of $(z,0), which satisfies a Callan-Symanzik equation. However, to find
a we may simply observe that the first derivative with respect to m, evaluated at
m = 0, is nothing but the ¢ = 0 limit of G ;. Thus, from equation (47), we have
the result

a=(1-])/2. (57)

The scaling function ¥ may also be computed within the ¢ expansion. We expect, for
large values of the argument mt®, that the effects of the random initial conditions
are unimportant, and that the order parameter relaxes with a ¢~1/2 power law.

4.4. Universal amplitudes

We have shown that the moments of ¢(x,t) scale in universal manner. This leads
us to define the amplitudes A, of the cumulants by

d)(xat)z ~ A2/t

.0 - 38(z, D)E ~ A, [12 (58)

and so on{. The moments satisfy the renormalization group equations

g 1 o — I —
(12 - 38t~ n) FE O =0 (59)

t+ These amplitudes are stricitly universal only it A = 1. In general, they contain a factor A-niz,
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so that, in order to evaluate A,,, we may calculate ¢(x,)?" in renormalized per-
turbation theory at the normalization scale ¢ = x~2, and set gy to its fixed point
value.

To lowest order, we have simply

—_— _ kP32 Ar~*
19(z, 2|, =2%Ax ?je T2 g o — 24‘1 + O(g}) (60)
50 we see that
€
A, = I"z""'o(fz)' (61)

In fact, if we had defined the coupling constant renormalization by Ap =
4k~ 2¢(z,k=2)2, we would have found that A, = gy /4 to all orders. However,
the differences between this scheme and the one used in the previous section show
up only at O(€*) in the amplitude A,. To see this, observe that the ¢ dependence of
the perturbation expansion has the form

-2¢ ~2¢

1 -3

A= |AnTt 4 al(emi"‘6 + az(f)A3n€—2 + a3(e)A3’°€ +oah)  (©2)
where a;, = —3 + O(e?) and a, = 9 + O(e?). On renormalizing, the pole terms are .
completely removed, so that

A, = §% + O(egh) + O(gR) (63)
evaluated at the fixed point. Thus

Y SN £ £ o
A2*8w+0(6)—12+(21n3+1)108+0(6 ). (64)

Figure 5. Lowest order diagram contributing to the amplitude A4 of the fourth cumulant.

Next, consider the amplitude A, of the fourth cumulant, In the Gaussian ap-
proximation, this vanishes, and it will continue to vanish up to an order where the
interactions begin to correlate all four propagators emerging from the ¢* vertex. The
lowest order such diagram is shown in figure 5. Note that it is O(A3) and therefore
negative. The diagram is evaluated in appendix B, to give

344
A, = -—Jreﬂea + O(e%). (65)
If the negative sign~for A, persists in higher orders, it implies that the distribution

of ¢(z,t) has a tendency to become bimodal, even though the initial distribution
function is normal. We shall see that this tendency becomes extreme for d = 0.
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4.5. Rigorous bounds

The result 43 = ¢, valid to all orders in e, actually saturates a rigorous bound on this
exponent. This may be derived as follows.
The equal time correlation function G, has the scaling form

Gy4(z,t) ~ 3@ f (52 11) (66)

so that ¢(z,1)? ~ ¢~(4+73)/2. Multiplying the basic equation (3) by ¢, taking the
expectation value, and integrating by parts, we have

1 2P = (ev9) - (Va7 - (@). (67)

The first term on the right-hand side vanishes by symmetry, and the last term is
bounded by @2. Thus

10— —2
58_¢ < -9 (68)
Substituting in the scaling form equation (48), this implies that, for large t,
(d+’75)f2(0) f2(0)2
tld+y3) /24 2 d+7s 69)
so that
Y3 2 € (70)

Our renormalization group analysis indicates that for d > 2, 4; = 0, so that this
inequality is trivially satisfied. However, for d < 2, the results of the previous section
indicate that the inequality is saturated. In that case, the amplitude f,(0) = A,, and
we have the further bound

hY
L
/A

(71)

B

For ¢ small, this is not a stringent bound, but, as will be shown in the next section, it
8 saturated for d = 0.

In formulating the problem so far, we have neglected two types of terms which may
appear in the effective action equation (10). The first type corresponds to higher order
powers of ¢ which may have been omitted from the original equation (3). It is easy to
see that they are strongly irrelevant for the critical behaviour. For example, consider
a term Ae9® on the right-hand side of equation (3). This corresponds to a term
A d)qb"‘ in the action equation (10). Power counting shows that [Ag] = [¢]~% = k~2,
and since ¢ acquires no anomalous dimension, we conclude that the renormahzatlon
group eigenvalue of \; is —2 exactly. Thus, such interactions remain irrelevant for all
d < 2. Similar considerations hold for terms in equation (3) with higher derivatives.
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Of course, this conclusion holds only if A > 0. When it vanishes, the scaling has to
be performed in a different manner.

More interesting are the effects of modifying the initial distribution. This can
be in the form of non-zero higher cumulants, or of non-trivial g-dependence in the
second cumulant A. The most relevant terms of these types in equation (10) are of
the form A, [ &(x,0)*d%z and A, [(V¢)2d¢z. Dimensionally [A,] = k-3¢ and
[Azl = k~%. Thus A, would appear to become relevant at the Gaussian fixed point
ford < % . Both have elgenvalue —2 when d = 2.

First, consnder tEe renormalization of A,. This may be defined through the value
of ([T, ¢(g;,w;)¢%) at the normalization point w; = 0, ¢; = x. To O(A?), the
integrals are the same as for the renormalization of A, and only the combinatorial
factors differ. We find that AR = Z,A,, where

— —2¢
Z, =1 —6A""T+Q(_Me-?)+(91n3+2)A2"2€ N 7))

Thus, defining 8, = x(8/0x) gl where git = ARx?-4, we find |
By=(2-3)gf + (6gp ~ (93 +2)gh + - ) gi + - (73)

so that the renormalization group eigenvalue —3(3,/gy at the non-trivial fixed point
gr=gR, 95 =0 :

¥y = -2+ e+ O(%). (74)

We see that the effect of the interactions is to make A, less relevant. In fact, if we
are able to ignore the O(e®) corrections, the normal distribution characterized simply
by the second moment appears to be adequate to describe the universal properties
all the way down to d = 0. This will be confirmed later.

-

Figure 6. Lowest order dressing of the irrclevant operator (vés')?.

Next, consider the renormalization of A,. The renormalized coupling is defined
in terms of (8/8¢%){d(q,w,)d(—q,wy)(VH)?) at the normalization point w; = 0,
q*> = k% To second order in A?, there is one new diagram, shown in figure 6 and
evaluated in appendix B. Proceeding as before, we then find that AR = Z2A2, where

Z =1—3A£+9A2fi+ ln3——— A2E 2(+--- (75)
2 € €2 27 2¢
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so that, in analogy with equation (73), we may derive the renormalization group
function

Ba=(2-)gF + (Bon— Gn3—F)gd +--) gl + - (76)
giving the renormalization group eigenvalue

; 2

—__0 3
Jo=—2— 5 + O("). W
This indicates that the effect of a non-zero, but finite, correlation length in the initial
state is highly irrelevant.

4.7. Generalization to n components

So far, we have considered the case of a single component Ising-like order param-
eter. It is straightforward to generalize the above analysis to a situation with O(n)
symmetry, where the order parameter ¢; has n components. The basic differential
equation is now, in dimensionless units,

é; = V¢, - ¢4, (78)

where ¢? = 3 q&:;'. The random initial condition satisfies ¢,(z,0)¢;(2',0) =
Ab;;6(x — z'). In the response field formalism, the vertex 51. ¢, ¢} may be repre-
sented as in figure 7. In the resultant diagrams, the indices ¢ are conserved along
the full lines, and there is a factor of n for each closed lcop. The case n — oo is
interesting. If the coupling constant is rescaled by A — A /n, the diagrams which
survive in this limit are precisely those included in the self-consistent approximation.
This is in close analogy with the situation in standard critical behaviour [8].

— L “
Figure 7. Representation of the interaction vertex in the O(n) generalization.

For finite n, it is straightforward to compute the relevant combinatorial factors
up to two loops. The relevant replacements relative to the n =1 case are

Iy — %(n-{- 21,
= n+ 2071,
Io— Y+ 2071, (9)
[, — %(n + 2)1,
I; = X{n+2)I,.

7
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Thus the renormalization group functions become

v, = 2(n+2)gp — 3(n+2)In3¢% + - - (80)

Y= (n+2)gg —3(n+2)($In3+ )gf + (81)

and the fixed point values are

€ €2

§+6(n+2)

i = + O(e®) (82)

with v; = € to all orders, as before. Thus, we see that rescaling gy — gg /n makes
the 1-loop results exact as n — oo, and once again, we recover the results of the
self-consistent theory in that limit. The fact that, to the order given above, the
renormalization group functions are proportional to (n + 2) results from the fact
that they are linear in » and must vanish when n = —2; for in that case one may
argue, as for the equilibrium case, that the two-point functions (¢$) and {¢¢} have
no loop corrections [11].

5. Comparison with zero dimensions

We have shown that the theory exhibits a non-trivial fixed point for d < 2, in an
expansion in ¢ = 2 — d, and that, in particular, the exponent 5 = ¢ to all orders.
It is a non-trivial test to check whether this is valid until ¢ = 2, that is d = 0. In
that case equation (78) becomes a system of n ordinary differential equations, whose
solution is elementary:

¢,;(0)

P = 20

(83)

where ¢(0)? = }_; ¢;(0) Thus we see that, as t — oo,

1 ¢;(0)
¢;(t) ~ GO 18(0)] (84)

and that, for a random distribution of initial conditions,

5.
(). (1) ~ —- 85
S0 & (D ~ (85)
in agreement, for large n, with the result equation (61), established within the ¢
expansion. It is interesting to note that the amplitude is independent of the form of
the initial distribution, indicating the universality of the amplitude A,. The fourth
moment is also easily obtained as

1 fur cos?@sin™ ¢ 6do 3 1
2t)2 [ sin™"?0d6 n(n+ 2) (2t)?

#i()* ~ ( (36)
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so that the ratio of the fourth cumulant to the square of the second is
A, 6
ek YOO 8
Al n+2 @7

This result illustrates the interpolation between Gaussian fluctuations (A, = 0), for
large =, and an extreme bimodal distribution for n = 1.
Similarly, we may calculate the response function

¢ (1) _ (1+2t4(0)%)8;; ~ 21¢,(0)¢,(0)

= 88
8¢,(0) (1 + 2t¢(0)2)*/? @

which, on averaging, gives
Gyg(t) ~ 17112 (89)

corresponding to an exponent vy; = 1, which should be compared with the e-
expansion result equation (49). The fact that the O(e) result is exact for € = 2
may be traced to the property that it is independent of n, and is exact in the limit
. — 00.

Although the model is soluble for d = 0, it is interesting to carry through the
renormalization group analysis of the previous sections. We choose » = 1 for sim-
plicity. Define the renormalized coupling by

Ap = 307, ©0)

(the factor of  is for convenience), and the dimensionless renormalized coupling by

gr = Ap k% Then, for a given initial distribution P(¢(0)), we have

gﬂzl—/m&—du. (1)

w 1 + u?k-?

We may now define the renormalization group function 3(gg) = x(9gg/8«) in the
usual way, and eliminate < to express it in terms of gg. In general, this cannot be
done analytically, but it is straightforward to examine the neighbourhood of the fixed
points.

For x - oo, gy approaches the ultraviolet fixed point gg = 0. For small k2,
grn = O(x72), so that 8(gg) = —2gx + O(g3), as expected. For x — 0, on the
other hand gz — 1, and as may easily be shown, this is the infrared fixed point. In
that limit, we may write

gR=1—52/m Plu) - 7(0) P(O)du—nzP(O)jm du 92)

2 2 2 2
oo K+ u K24 u

so that gg = 1+ 7x P(0) + O(x?}, and B(gr) = (g — 1) + O((gp — 1)?). Notice
that the slope of the G-function at the non-trivial fixed point is universal as long as
P(u) is analytic at u = 0,

An interesting soluble case is when P(u) is a Cauchy distribution, that is

A

P(u) = T

(93)
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The integrals are now easy, and we find that gp = A /(A + x), which implies that

B(gr) = —9r(1 - gg) (54)

the simplest possible B-function one could write down with the appropriate zeros.
Note, however, that in this case the slope of the G-function at the origin is —1
rather than —2 as was found above. This may be traced to the fact that, for the
Cauchy distribution, the second moment does not exist, and therefore the standard
perturbation theory does not make sense. In fact, perturbation theory exists only when
all moments of the initial distribution exist. Even in that case, the perturbation theory
diverges. The integral in equation (91) may be seen as a kind of Borel summation of
the expansion.

Nevertheless, the Cauchy distribution does give the correct universal behaviour
near the infrared fixed point. This is because, at large ¢, in fact, for all t > 0, the
distribution of ¢(t) is bounded, and all moments exist. The case of d = 0 therefore
gives an interesting solvable toy model in which the structure of the renormalization
group may be studied.

6. Symmary and further remarks

We have considered the evolution of a critical system from a random initial state,
such as that which would follow a quench from high temperature, in the regime
when the effects of thermal fluctuations may be neglected. Mathematically, this is
described by a nonlinear diffusion equation with random initial conditions. We found
that for d > 2 the nonlinearities are irrelevant, and the fluctuations at large times
have a Gaussian distribution. For d < 2, there is a non-trivial fixed point within the ¢
expansion, and the fluctuations in local quantities like have a universal behaviour. The
variance ¢(z,t)? behaves like 1/, to all orders in ¢, while the long time behaviour
of the response function is governed by a non-trivial exponent ~;. These results were
confirmed both at large n, and by an exact calculation for d = 0. It is interesting to
interpolate between the O(e?) calculation and the exact results for e = 2. A simple
Padé approach gives v] = 0.53 for d = 1 and n = 1. Similarly, for the universal
amplitude of the local fluctuations, we find 4, = (.15 in this case.

The fact that, for d < 2, the fluctuations decay more rapidly than expected on
the basis of the Gaussian model (which would give a t~4/? dependence for ¢(x,1)?),
may be understood on the basis that the nonlinearities violate the conservation of
the order parameter, and allow relaxation of fluctuations to progress more rapidly.
A preliminary analysis of the case of a conserved order parameter (model B (1))

oo A .
indicates that the nonlinearities do not accelerate the decay of local fluctuations.

It is somewhat disappointing that the upper critical dimension for this problem
turns out to be two, as it renders the interesting part of the conclusions less appli-
cable in physical situations. Nevertheless, we believe that the field theory we have
constructed has a number of interesting features in its own right. In particular, it
appears to have non-trivial behaviour for d = 1, unlike most equilibrium critical sys-
tems. If the model turns out to be soluble by some other method (as is suggested by
its formal analogy to the nonlinear Schrédinger equation), this would pive a unique
example of a non-trivial field theory below its upper critical dimension.

In order to raise the upper critical dimension it is necessary to consider systems
with other symmetries. It is not difficult 1o show that, in the case of a non-conserved
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order parameter, the upper critical dimension d,, for the relevance of disorder in the
initial condition is always two less then the upper critical dimension for equilibrium
fluctuations. Thus, a system described by a free energy with cubic interactions would
have d, = 4. Such an equation would describe the population dynamics of a simple
birth-death process. In the realm of traditional critical phenomena, another example
would be a spin glass, for which initial conditions are known to play an important
role in the low temperature phase.

We conclude with some remarks on the case of a conserved order parameter. This
is described by an equation of the type equation (3), with the replacement I' — —I'V2,
In addition, the fluctuations in the initial state must also respect the conservation of
the total order parameter. This has the effect of replacing A — —AV? Such
models have been considered extensively in the low temperature phase in the study
of spinodal decomposition [9], and the subsequent dynamics of domain growth. In
this context, the exactly soluble large = limit was also considered [12].

In the case of a quench down to the critical point (at the critical concentration), it
is straightforward to set up the field theory formulation, as in this paper. Dimensional
analysis then indicates that the coupling constant becomes dimensionless for d = 0.
This appears not to be very interesting. It indicates that Gaussian fluctuations persist
for ali ¢ > 0. An analysis of the soluble case of large n confirms this. However,
it is also possible to consider a quench at a non-critical concentration. In this case,
the relaxation time approaches infinity at the spinodal curve. Since the symmetry
is now broken, the system is described by a model! with cubic interactions, and the
critical dimension is raised to two. However, an analysis of the corresponding field
theory reveals the puzzling feature that, although the theory is non-renormalizable
for d > 2, as expected (corresponding to the irrelevance of the interactions in the
long time limit), exactly at d = 2 there appear to be no primitive divergences. This
appears to make the kind of renormalization group program described in this paper
difficult to carry out.
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Appendix A

We show how to estimate the strength A of the initial state randomness for the case

of a quench from high temperatures. To be specific, we consider an Ising model with
partition function

Z=Trexp |18 J(z—z')s(z)s(z') + BH Y s(z)]|. (A1)

In order to put this into continuum form, we use the standard transformation, writing
the quadratic term in s as a Gaussian integral over a field ¢, after which the trace
over s may be performed. Finally, a gradient expansion is performed, and the naive
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continuum limit is taken. When this is done, keeping track of all of ali the factors,
we find that

z= [Doexp [- [ L2 (@818 + R +meh(o+ sm)| @

where J = ¥°_J(z), and R? = J-'Y, z2J(z) measures the range of the inter-
action. Equation (A2) is brought into the standard form of a Landau-Ginzburg free
energy by expanding the exponent in powers of ¢ and rescaling ¢ — (3Ja?/R?)!/2¢.
The result is a functional of the form

F= / (L(TV)2 + (r/6)? + 1Ag* + he] diz (A3)
where
1-387 2 J2qd iz
Sl L =0 an. (A9)

If we now identify this with the effective reduced free energy used for the dynamics,
we see that A should be given by the g = 0 compcnent of {¢(q)@(—q)} at high
temperature 3 — 0. In that case, the nonlinear terms are negligible, and we see that
that A ~ r~! = RZ

Appendix B

We summarize the calculation of the various 2-loop Feynman integrals encountered.
The first is that of figure 2(e). It has a symmetry factor of 18, and is altogether

1

18(27A) ———
y / dk,dk,

(—iw + k¥ + k3 + (g + Kk + k)2 (—iw + ¢ + 2k} + 2k3)

(BL)

which is to be evaluated at w = 0, ¢ = x. Using the standard Feynman parameter
method, this becomes

1
18(2nA)2k2 f dx

0
x/ dk,dk,
(2k? + 2k2 + 2zk, - ky + 2xq -k, + 22q-ky + (1 - z)g?)?’
(B2)

Although it is possible to evaluate this directly in 2 — e dimensions, in order to extract
the residue of the simple pole at ¢ = 0, which comes from the large & behaviour, we
may neglect the g-dependence in the integrand. Defining k&, = k; + k,, the integral
becomes

1! dk, dk_
Z-/o dm/ (1 + L)kl 4 (1~ Ja)k2)? (B3)
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which, with a cutoff, would behave for d = 2 like

1 dz
12n21n/\] . B4
4 i (1+%1‘)(1—%I) ( )

In dimensional regularization, the factor A? must accompany a factor of x~2¢, and
therefore In A is replaced by x~2¢/2¢. The integral over = gives In 3, and putting
these factors together we find the result quoted in equation (32).

The contribution of figure 4(f) to G is

dk,dk,
(kf + k% +(g+ ky + k2)2)2

6(2«&)%-4/ (B5)

in which the integral, by the same substitution, becomes

dk, dk_ 1,
/(%2 Ty~ 32 InA (B6)

giving the result for /, in equation (34).
The contribution of figure 6, which represents a dressed insertion of the operator
(Vo) is
(ky + ';13“1)25(1‘:1 + ky + ky)dk dkydky
2
((ky + 59)2 + (ky + §0)2 + (kg + §9)?)
2(2rA)? j’ 8(ky + ky + k3)dk,dk,dk,
3 kf + k3 + k3 + 39

27A)2

B7)

T evaluate the renormalization of A, we need the derivative with respect o g°.
This gives

2
_2(2m8) f dk,dk, 2 5
9 (k] + k3 + (k) + ky)Y)

which may be evaluated by similar techniques to give the result quoted in equa-
tion (75).
Finally, the first non-trivial contribution to the amplitude A, (which is, in fact,

at 3-loop order) is shown in figure 5. This is more easily evaluated in the (gq,t)
representation

i

- 24(211'A)3f dt'fdk'ldk:,dk-ae'““ Wh+kI+ED) o= (1= ) (ko tha+ka)T (B9)
0

By the rules of Gaussian integration, this is

—24(27A)3

71'3 ! - ’
(2#)5/0 D' dt (B10)
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where, to the required accuracy, we have taken d = 2, and
2t t-t t-t
D=t 2t t-t'|=22t-t")t+1t)? (B11)
-t t—1t" 2t

giving the final answer

(812)

_ 24(270)° (3 +4In2
212 18 ’

The result in equation (65) then follows on inserting the fixed point value for A.
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