
Random initial conditions and nonlinear relaxation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 2765

(http://iopscience.iop.org/0305-4470/25/10/008)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phy, A: h4nth. Gen. 25 (1992) 2765-2790. Printed in the UK 

Random initial conditions and nonlinear relaxation 

John L Cardy 
Depanment of Physics, University of California, Santa Barbara CA 93106, USA 

Rcceived 2 Septemkr 1991 

AbstrecL We wudy the effect of randomnes in the initial mnditions an the deterministic 
ditfusion equation with nnnlinear terms. Phyically, this desaibes, among olher things, 
the time development of a system quenched from a high temperature io the vieinily d 
the critical p in t ,  in the approximalion where the eiiects of thermal n o k  are negleded. 
We mnsider the case of a nonconsewed order parameler with O( n) symmetry, and show 
Ihat lhe nonlinearities are irrelevant for the large lime behaviour for dimension d > 2. 
The model is investigated for d < 2 using the renormalization group and rapansion. 
I1 is found, IO all orders in f ,  that lhe local fludualions in the order parameler scale like 
t-’12, and have a universal distribution. me time dependenoe of the response function, 
describing the dependence on the init ial  mndilion, is characterised by another exponenl 
which is wmputed lo O(c2). lhese results are checked in the aactly soluble - of 
n - m and d = 0 .  

1. Intmduction 

Nonlinear relaxation processes are found in many areas of physics, chemistry and 
biology. In the generic case, the effect of the nonlinearities is qualitatively unimpor- 
tant for the large time behaviour, which exhibits the usual kind of exponential decay 
characterized by a finite relaxation time scale. Under such circumstances, any ran- 
domness present in the initial conditions tends also to be. suppressed exponentially, 
and leads to no qualitative differences in the large time behaviour. However, when 
the nonlinearities dominate, the exponential behaviour is typically modified to that of 
a power law. In such circumstances, as we shall show, initial state randomness may be 
very important, and lead to strong qualitative differences in the long time properties. 
The manner in which this comes about is analogous in many ways to the behaviour of 
critical fluctuations close to a second-order phase transition, and the methods we use 
in this paper follow closely those of the renormalization group so successfully applied 
in the latter class of problems. 

For the case of a system described by a single space and time-dependent field 
+(z, 2 )  (referred to, by analogy with critical phenomena, as the order parameter), we 
consider nonlinear relaxation processes governed by a deterministic equation of the 
form 

where F{ +} is some functional, which, by the form of the equation, is non-increasing 
as a function of time. Throughout most of this paper, we consider the following 
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specific form for F 

although, as will be shown, many of the results are universal and do  not depend 
on the detailed form. When T + 0, the long time relaxation is exponential, with 
a characteristic time ,- T- ’ ,  but when T = 0, this is replaced by a power law. 
This is the analogue of the critical point. Even when T is small, we expect the 
nonlinearities to dominate intermediate times and lead to effective power laws in that 
regime. Equation (1) is completely deterministic and cannot by itself lead to the kind 
of non-trivial power law decays associated with true critical phenomena. However, 
we also suppose that the initial condition +(z,O) is a random variable, with some 
strength characterized by a parameter A. For example, it could have a white noise 
distribution with +(z,O)+(z’, 0) = A6(z - z’). Once again, we shall show that 
universality implies that the precise details of this distribution are not important. 
Then it will turn out that this system, although deterministic for t > 0, can exhihit 
non-trivial critical behaviour at T = 0. 

The only stochastic aspect of the problem so far considered is the randomness 
in the initial condition. When a random noise term q(z, t )  is added to the right- 
hand side of equation (l), it becomes the usual time-dependent Landau-Ginzburg 
equation used to describe dynamic critical phenomena [l, 21. In that case, F is 
simply the coarse-grained free energy (in units of Ic,T), and the noise 7 represents 
the effect of thermal fluctuations on scales smaller than that of the coarse-graining. It 
is usually chosen also to have a white noise distribution, satisfying q(z, t )q(z ’ ,  t’) = 
2 D S ( z  - z’)&(t - t ‘ ) .  The principle of detailed balance applied to small fluctuations 
in the equilibrium state then implies that D = r. When the thermal noise is present, 
we would expect it to wash out the effects of the randomness in the initial conditions 
on a relatively short time scale. For example, if this randomness results from a quench 
from a relatively high temperature to the vicinity of the critical point, one may show 
(see appendix A) that A - RZ where R is the range of the interaction. Thus the 
ratio A / D  of the initial noise to the thermal noise gives rise to a characteristic time - R 2 / D .  When detailed balance is satisfied, this becomes R Z / r .  This is typically a 
microscopic time. It is to be compared with the relaxation time close to Tc, which is - F Z / r ,  where the correlation length ( is always larger than R, and diverges at T,. 

The relative unimportance of the initial state randomness for equilibrium phe- 
nomena appears in the renormalization group approach as a consequence of the 
parameter A being strongly irrelevant at the fixed point, with D # 0, which de- 
scribes conventional critical dynamics. However, as shown by Janssen et al [3] and by 
Humayun and Bray [4], this irrelevant operator leads to a new non-trivial exponent 
governing the response function describing the dependence on the initial conditions 
of quantities at large times. (See also Huse [ 5 ] . )  This is not the case studied in this 
paper. Instead, we are interested in the fixed point where D = 0. 

In order to realize such a situation, it is clearly necessary to consider systems in 
which detailed balance is violated, and the effects of thermal noise are negligible. 
There are many systems, for example those maintained in a steady non-equilibrium 
state by some external driving force, for which this can be a reasonable approximation, 
and we expect our analysis to be applicable in such cases. 

Even when the effects of initial noise are important, there remains the question of 
how they are affected by the nonlinearities in the system. For the thermal fluctuations, 
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this question is answered by the Ginzburg criterion, which implies, for an ordinary 
critical point, that for dimension d > 4 such nonlinearities are irrelevant, while for 
d < 4 they are important sufficiently close to the critical point We shall show in 
this paper that, for the case of a nonconserved order parameter, the oonesponding 
critical dimension for nonlinearities to influence the effects of the initial randomness 
b d ,  = 2. This means that, for d > 2, the large time fluctuations deriving from 
the initial state randomness are Gaussian in character. However, for d < 2 this is 
not the case. Tbe behaviour for d < 2 may be investigated within an expansion 
in E = 2 - d .  There turns out to be a remarkable universality in the spec”  of 
large time fluctuations in this case. The equal time order parameter fluctuations 
all scale like t - ’ l2,  with an exponent independent of d. However, they are not 
normally distributed. The distribution of the local order parameter scaled by tila 
has a universal form which becomes increasingly bimodal in shape as d is decreased 
below two dimensions. The equal time correlations also attain universal forms in 
the large time limit. The response function, which gives the response of the order 
parameter at large t to a change in the initial wnditions, has  a time decay of the 
form t - ( d + T ; ) / 2 .  We have wmputed the exponent 7;  to second order in c. This 
universal behaviour is insensitive to small modifications in the forms of both the 
functional F and the distribution of initial state fluctuations. These modifications 
give rise to perturbations which are irrelevant in the sense of the renormalit ion 
group. The exponents Characterizing these corrections are wmputed for the most 
important perturbations. 

Unlike the case of thermal fluctuations, which destroy the low-temperature or- 
dered phase for suficiently IOW dimension d, the initial state randomness, since it 
ultimately decays away, cannot influence the behaviour of the system at very large 
times. Thus, with the neglect of thermal fluctuations, there is no lower critical dimen- 
sion for this problem, and there should be non-trivial behaviour all the’way down to 
d = 0. Since the problem is easily soluble in this case, this forms an important check 
of our e-expansion results. In addition, when generalized to an ncomponent order 
parameter, the model turns out to be exactly soluble in the n 3 CO limit for all d. 
This forms a further check on our calculations. 

The model we consider has been used extensively in studying’the effects of a 
quench from a high temperature into the ordered phase [9]. In that case, randomness 
in the initial state is dissipated by the motion of domain walls. We should stress that 
in this paper we consider exclusively the case of a quench to a temperature at, or 
just above, the critical temperature, when the slowness in the dynamics is a result of 
the critical slowing down of local fluctuations. In principle, it would be necessary to 
wmbine both types of analysis, as well as incorporate the effects of thermal noise, in 
considering a quench to just below the critical temperature. 

The layout of this paper is as follows. In the next section we develop the field 
theory formulation of this problem and the diagrammatic expansion used in its analy- 
sis. Then, the model is solved in a self-consistent, Hartree-like approximation, whose 
results are prototypical of what is expected for the full theory. The next section con- 
tains the main results of the paper. We develop the renormalization group program 
for this model, and compute the renormalization group functions to 2-loop order. 
We show how the structure of renormalization in the theory leads to results for one 
exponent which are exact to all orders in e. The following section is devoted to a 
comparison with exact results obtained in d = 0 dimensions. Finally, we summarize 
our conclusions and make some further remarks concerning generalizations of this 
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work and potential applications to other types of dynamical systems. 

2. Field theory formulation 

As described in section 1, we are interested in solving the partial differential equation 

a+ - = -r (-v2+ + r+ + x + ~ )  
at (3) 

with the initial condition +(z, t )  = +(z,O), where the +(z,O) are random variables 
drawn from a probability distribution satisfying +(z,O) = m, +(z,O)+(z',O) = 
m2 + A6(z - z'). In principle, the delta function could be replaced by some short- 

will be discussed later, these modifications are irrelevant for the universal properties 
of the critical behaviour. 

- 

r,iigei f.;n&X, an6 *e higher cli.;mi;!aos CGLilQ a:so &? Gken oiiio a w i i i t ,  biii 2s 

When X = 0,  equation (3) is the diffusion or heat equation, with solution 

+(z, t )  = Go(z - z', t ) + ( z ' , O )  d d z  (4) 

where G o ( z , t )  = S , - r ( ~ ' + r . ) 1 d d q / ( 2 r r ) d .  Since the equation is linear, if +(z,O) 
has a Gaussian distribution, so does +(z , t )  for t > 0. The mean order parameter 
+ ( z , t )  does not decay in this approximation at the critical point r = 0,  and the 
equal-time correlation function is 

- 

Note, in particular, that in this case the local fluctuations m- m2 behave like - t - d l 2 .  

Flgvi-e 1. I k e  diagrams representing the penurbalive wlulion of equation (3). Each 
vena ranies a tactor of - A .  

When X # 0,  the solution of equation (3) may be obtained iteratively as a 
perturbation expansion in A. Each term in the expansion may be represented by a 
tree diagram in which each propagator corresponds to the Green function Go, and 
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each vertex ta the interaction - A .  The result is a set of tree diagrams, the first few 
of which are shown in figure 1. For example, the second diagram gives a contribution 

- 

X Go( 2'- 21 9 1') Go( z'-zZ, 1') Go( z'- "31 t')+( 2 1  7 o)+(z , ,  o)+(% 0 )  

(6) 

dt 'Jddz'ddzl  ddz ,ddz3G, (z  - r',t - 1') 

to b(z,t). On averaging over the +(ri ,O) with the above distribution, some of the 
free ends at t = 0 are sewn together in pairs, with an associated factor of A for each 
pair. The remaining ends each carry a factor of m. Similarly, one may represent 
other averages, such as the correlation function +(x, t)+(z' ,  t ' ) ,  graphically. Another 
important quantity is the response function, defined as 64(z,t)/6+(z',O). This is 
given by a sum of similar diagrams, with the end at (z',O) left free. The fvst few 
diagrams contributing to the response function in the case m = 0 are shown in 
figure 2 

+ +-L&+A +. . . .  
(d 1 (e) 

Flgure 2. Diagrams, up to 2 lwps. contributing lo the response funclion C,;. All 
closed loops terminale a1 t = 0 with a tactor of A.  

Since the problem, after averaging, possesses translational invariance in space, it 
is convenient to evaluate diagrams in the ( q , t )  representation, in which everything 
is Fourier transformed with respect to z. In that case, the propagator is simply 
e-r(qa+r)t, and each line carries a 'momentum' q which is integrated over, subject 
to being conserved at the vertices. The vertices are time-ordered, and integrals are 
performed over these intermediate times subject to this constraint. In addition, each 
diagram carries a symmetry factor, corresponding to the number of ways it can be 
derived following the above procedure of iterating the equation and sewing together 
the initial ends. While it is possible to give a general rule for this factor, in practice 
it is straightfonvard, and more reliable, to derive it from first principles. In some 
cases it is also convenient to work in the ( q ,  U )  representation, Fourier transforming 
also with respect to 1. Because of the initial condition, however, the problem is not 
translationally invariant in time, and such a representation is useful only in evaluating 
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correlation functions depending on just one or two time coordinates. For example, 
when evaluating the response function, we may Fourier aansform with respect to t 
and evaluate diagrams in t imeadered  perturbation theory, assigning a propagator 
( - iw+C;(q?+r))- '  to each intermediate state consisting of lines carrying momenta 
Qi. 

This set of Feynman rules leads to divergences in some of the integrals, which will 
be analysed kiter, and which play a crucial role in the renormalization group analysis. 
They may be removed by replacing the &function correlations in the initial condition 
by something smoother, but it is more practical to regularize them either by imposing 
a cut-off IqI < A in all internal momentum integrals, or by analytic continuation in 
the spatial dimension d.  

These diagrammatic rules may also be derived from an action in a manner similar 
to that used for studying dynamical critical phenomena [6, 7. Equation (3) may - Y.1p"" n.,., 'I .".IC.LI"IImI "I.,'. I Y L l . A L " L I ,  "1LnCNYc,ng an, aunnra.r)r ,qJ", ,>C 1 , C N  b :--.=A ..;,I. II f.,"rt:n"nl rl.,ltn h."",:,." :"*.,.a...-:"" n" "....:I:̂ ... _^^^_^^ G"1.4 

G(z, t )  

/ 6 W e x p  ( / d d z d t G ( & +  F'(-V24+r4+'X43))).  (7) 

m e n  x = 0: ! + ! z ~ t ) , & z r ~ o ) )  is just the bare respnse function ~ ~ ( r  - zfj?)l 
In general, a tree diagram for 4( z, t )  with ends at ( zI, z2,. . .) corresponds to 
(~(~,t)G(zl,O)G!z~,O). . .) evaluated with respect to the measure in equation (7). 
Thus, the average over the initial conditions 4( I, 0) may be implemented by integrat- 
ing over G(+ ,O)  with a Gaussian weight factor. The result is that the full response 
function is 

Note that this differs from the usual functional integral formalism of critical dynamics 
[6, 7] only in that the last two terms are localized to the t = 0 time slice. 

In this form, the problem resembles that of the equilibrium statistical mechanics 
of a semi-infinite system, where the dimension normal to the boundary is time t .  
By analogy with such systems [lo], we should expect that the critical behaviour of 
the quantities determining the 'bulk' behaviour for t > 0 should not depend on 
the boundary terms, but that the critical behaviour of correlation functions involving 
boundary fields may depend on both the bulk and the boundary terms. Since in 
this case the 'bulk' behaviour corresponds to the fully deterministic equation (3), we 
expect that the parameters r, r and X which determine this are not renormalized 
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- +  & + A  

Plgure 3, Diagrams surviving in the selfconsisten1 approximation (large n limil). 

in any way, but that 'boundary' operators such as &z,O)  and boundary coupling 
constants such as A should undergo renormalization, leading to possible non-trivial 
critical behaviour for response functions. As we shall see, with some refinements, this 
picture is accurate. 

The action functional equation (10) is useful for performing the dimensional 
analysis which will guide the subsequent renormalization group program. In terms of 
dimensions of momentum k and frequency w ,  we see from equation (10) that 

[ r ]  = wk-' [A ]  = ka[$]l-2 [A] = k - d [ 4 ] 2  [m] = [$] (11) 

which indicates that the true expansion parameter is AA, with dimension k 2 - d .  
This suggesu that d = 2 is the upper critical dimension for this problem, since for 
d < 2 higher order terms in the coupling constant will be accompanied by more and 
more singular behaviour of the coefficients as t - 00. In anticipation of the result, 
suggested above, that r and X are not renormalized. we may rescale the fields so that 
they are both set to unity. We then have the following list of engineering dimensions: 

[+I = k [$I = kd-' [A] = [m] = k.  (12) 

The last result shows that the symmetry-breaking parameter is relevant, and should 
be expected to modify the large-time behaviour in a manner similar to that of a surface 
magnetic field. 

3. Self-consistent calculation 

Before going into the details of the renormalization group analysis, we first describe 
a self-consistent approximate solution to the problem. A similar analysis has been 
made for the case when thermal noise is included [3], and for a quench down to zero 
LT",JL"IT L'*J. 1110 ","U,"** lCp'"'...& ",U 11".ll . . l*~l y L*I.L. "I 'y'PLLu., (2, "J 

- 34P.4, thus rendering the equation linear, albeit now time-dependent, and calculating 
$2( t )  selfconsistently. When m = 0, this approximation is equivalent to summing 
the set of diagrams shown in figure 3. As will be shown later, this becomes exact in 
the large n limit, with the replacement 3 - n + 2. 

."-..--- ...- L C , l l  TL:- :-....I.*-* *.%..Lr:"n th., ".,"l:,..%~* A3 +arm :" I,, X.. 
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The solution of the differential equation has the form 

+ ( z , t )  = / G s c ( r - z ' , f ) + ( z ' , O ) d d z  (13) 

where the Fourier transform of the self-consistent response function satisfies the 
integral equation 

-(qz t r ) ( t - l ' ) -  Gsc(q, t )  = - 3 e +(t)2Gsc(q, t ' )  dt'. (14) if  
From the form of this equation it is clear that G,, has the functional form 

GSc(q , t )  = e-(q"tr) tF( t )  (15) 

sa that 

Hence F ( t )  satisfies the simple integral equation 

the solution of which is of the form 

The role of d = 2 is apparent in this expression. For d < 2 the perturbation 
expansion is well-behaved in the small-time limit, and we may take the lower limit of 
the 2' integration to be zero. For d 3 2 this is no longer true. An analysis of the 
diagrams in figure 3 shows that they are finite with a momentum cut-off l / c  < A if 
the time integrations are performed first. Since we have not done this, it is necessaly 
instead to cut off the integral in equation (17) at 1' - With this in mind, it 
is possible to analyse the large t behaviour of the solution. For T > 0, we see that 
F ( t )  - constant, so that Gsc behaves essentially as in the non-interacting case, with 
exponential decay of the initial state fluctuations. At the critical p i n t  T = 0, we see 
that, for m = 0 and d < 2, F(1)  has the form 

1 - 4 4  (19) 
1 F ( t )  = 

(1 + constantAt1-d/2)'/2 

where d = 2 - e .  It is interesting to compute the equal-time correlation function, 
which, in the same approximation, is given in qspace by AGsc(q , t )2 .  In particular, 
we see that 
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Later we shall show that this hyperuniversal exponent, independent of d for d < 
2,  b a general feature and not limited to this approximation. It is interesting to 
compare this result with the non-interacting case which gives r d l z .  The amplitude 
in equation (20) will also be shown to be universal, and correct to first order in e. 

Next, consider the case when r = 0 but m # 0, so that the initial conditions 
break the symmetry on average. Then we see that F ( t )  - l / (mtl /z) ,  and the 
fluctuations are relatively less significant. However, there is an intermediate regime 
described by a scaling form 

F ( t )  - t - 4 4 V  (,w 1 4  (21) 

where *(U) = (1 +mnstantu)-'/*. This illustrates that m acts as a relevant variable 
with crossover exponent $d.  

Another quantity of interest is the response function (4(z, t )&z' ,  t o ) )  for t o  > 0. 
It satisfies a similar integral equation to that for G,,, and its Fourier transform has 
the form, at criticality, e d ( ' - ' O ) F ( t ;  t o ) ,  where now 

The solution is 

F ( t ; t , )  = exp - (A/ (8? , )d12  t'-d'2F(t')2dt' (23) 

and, on substituting the exact form for F ( t ' ) ,  we find that 

Thus, F ( t ;  t o )  has the same behaviour as t - CO at fixed to as does F ( t ) ;  however, 
it has a different overall dimension, and its limit as t o  - 0 is not F( t). This is an 
example of the different renormalization effects for t = 0 and t > 0, in analogy with 
surface critical behaviour [lo], which will be commented upon later. 

Finally, in the low-temperature phase r < 0 we see from equation (17) that 
F ( t ) - z  - (mZ + O(t-d/z))e21rlt as 1 - CO, so that the leading behaviour of the 
bare term is cancelled, and 

This implies that for m = 0 the response function (+(z, t )&z,  0)) has a slow t - d / 4  
decay, presumably reflecting the slow diffusion of domain walls. However, the local 
fluctuations b(z, t ) 2  .. t o ,  as expected in an ordered phase. 
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4 Renormalization group analysis 

4.1. AnaIysb of divergences 

We begin the renormalization group program by making an analysis of the divergences 
occurring in perturbation theory [SI. A general correlation function of non-composite 
fields has the form 

calculated with respect to the action equation (10). Without lack of generality, we may 
assume that all the arguments t i  of the fields 4 are strictly positive. It is convenient 
to work in the ( q ,  1 )  representation, since the bare propagator is then dimensionless, 
and the power counting of divergences is simpler. We first identify the primitively 
divergent diagrams, that is those divergent diagrams with no divergent subdiagram, 
using dimensional analysis. From equation (12) we see that the Fourier transform of 
the above correlation function has dimensions 

where the iirsi factor comes from iacioring out an weraii momenium-conserving deiia 
function, and the second from the Fourier integrals. If this correlation function is 
then expanded in powers of A, the Feynman integrals contributing to the coefficient 
of A” will have dimension k 6 ,  where 

When 6 is positive, the corresponding diagram is potentially divergent, with the appro- 
priate power of the cut-off A. For d > 2 we see that, no matter what the values of 1 
and m, arbitrarily high powers of A appear, indicating that the theory is not renormal- 
izable, or, equivalently, that A is irrelevant for the large t behaviour. For the marginal 
case d = 2, 6 < 0 except for (4(z,t)$(z‘,t’)) and Gdd = (4(zl,tl)+(z2,t2)). 
This implies that these are the only correlation functions with primitive divergences. 
This dimensional argument assumes that the divergence is arising from all the inter- 
nal momenta of a given diagram becoming simultaneously large. Divergences may 
also arise when a subset become large, but this is, by definition, a divergence in a 
subdiagram and so is not primitive. We shall assume, in accordance with conventional 
field theories, that renormalization of the primitively divergent diagrams is sufficient 
to render all diagrams finite [SI. 

In fact, (4(z,t)G(z’, 1 ‘ ) )  is not primitively divergent for t‘ > 0. This is because 
at least one of the integrations over the time of an internal vertex will have a lower 
bound of t’, and the associated propagator entering this vertex, carrying momentum 
le, will behave at large k like e -L2 t ’ ,  and so will be exponentially damped. Thus, if 
the diagram is divergent, this divergence must come from a subdiagram. Since this 
would also apply to any correlation function of the form equation (26) in which all 
the arguments t i  and t; are positive, it follows that neither 4(z , t )  nor G(z’,t’) 
need any multiplicative renormalization for t,t’ > 0, and that, as stated earlier, 
neither will other parameters characterizing the 1 > 0 theory, such as A and r. 
Only a coupling constant renormalization is needed, in principle, to render finite the 
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correlation functions with all time arguments positive. However, J ( d , O )  may need 
multiplicative wavefunction renormalization in its correlation functions, in addition 
to coupling constant renormalization. As stated earlier, we never need to consider 
correlation functions involving ,$(I, 0). 

We conclude that renormalization in this theory should be very simple, and that 
it involves a multiplicative renormalization of ;(z‘,O) and a renormalization of A. 
Although these arguments are somewhat formal, and certainly not rigorous, we shall 
see that, at least to 2-loop order, they are correct. The fact that &z’, 1’) renormalizes 
differently for t’ > 0 and 1‘ = 0 is familiar from the analogous case of surface critical 
behaviour (101. In our case, the ‘bulk’ theory corresponds m a deterministic equation, 
for which there can be no renormalization effects. 

4.2. Two-loop calculation 

Guided by the results of the last section, we now consider the diagrams contributing 
to G - and G which are the only ones containing primitive divergences. We shall .++ om’ consider the cr~trcal theory, and work in d = 2 - e dimensions, which will serve to  
regulate all divergences. 

First, consider G+a(q ,w)  = j d d z d l e i g - z  e iw‘ (,$(z,t)$(O,O)). The diagrams 
contributing to this up to two loops are shown in figure 2 The bare term is (-iw + 
q2)-’ .  The I-loop contribution is that of diagram (b). It is 

dk  
-iw + 9 2  + 2k2 I b = - 3 A  . 

where dk  is shorthand for ddk / (2n )d .  The factor of 3 arises from the three ways 
of pairing the end vertices of the associated tree diagram. The integral is readily 
evaluated by standard methods to give 

where S, = in. This factor is ubiquitous and, henceforth, will be absorbed into the 
definition of the coupling constant. Similarly we find that 

dk,dk2 
-iw ‘ J  + q 2  (-iw + qz + 2kf)(-iw + q2 + 2kf + 2k;) Id = ZI, = 9 ( 2 ~ A ) ~  

n e  only non-trivial 2-loop integral is that of figure 2(e). This is evaluated in ap- 
pendix B, to give 
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Figure 4 Diagrams, up lo WO loops, contributing 10 Ute mrrelalion function G++. Only 
( f )  is a new -man integral. 

Next, consider 

c ( n  < ,  ,.,.I = / A d T &  ~ l . ~ ' ~ = p ' " ' * l p ' " 2 ( ) ! ~ ( T , ! , ) ~ ( n , ! i ) )  

.I - - - - I  - - 1 -  
- ** \ _ 1 >  - 1 7  - ' I  

The bare term 8 2?rA(-iw, + q2)-'(-iw2 + q2) - ' ,  and the corrections up to two 
loops are shown in figure 4. The calculation of the first few diagrams is facilitated by 
observing that 

G+6(q3U1,Wz) = ~ ~ A G + ~ ( Q , W , ) G + ~ ( - ~ , W , )  + o(A3)  (33) 

with the only O(A3) correction coming from diagram (f), which is evaluated in 
appendix B to give 

(34j 

Since G+J and G++ have only logarithmic divergences at d = 2, to renormalize 
them we need do so only at one point. It is convenient to choose this to be w1 = 
w2 = 0 and q = IC, where k is arbitrary. We may then summarize the results of the 
2-loop calculation as 

and 

G,+ = 
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4.3. Renormalization and E expansion 

A discussed above, we expect that the whole theory, including G+J and G++, may 
be rendered finite hy suitably renormalizing q(t = 0) and A. Specifically, define 
6, = Zcl$ by the condition that (&,) = I E - ~  at the normalization point w = 0, 
q = n, and A, = Z,A by the condition that (44) = 2rrARn-' at w, = wz = 0,  
q = n. Then Z ,  and Z ,  are given by the expressions in parentheses in equations (35) 
and (36) respective!y. 

It is also useful to define the dimensionless renormalized OOUpling by g& = 
A,K-'. We shall also need the renormalization group functions 

Note that 

p(gR) = -cy^& + -fZ(gR). 

Explicitly we have 

and 
K - Z e  

yz = 3Ati-' - 9A2- - ( $ I n  3 + l)Azn-2' + 
€ 

= 39, -(:In 3 + 1)gk + .  .. .  (41) 

Note that the fact that the renormalization group functions are finite as t -, 0 when 
expressed in terms of the renormalized coupling constant is an important and non- 
trivial check of our assertion that coupling constant renormalization is sufficient to 
render G++ finite. 

We now write down the CallanSymanzik equations for G+d and G++ by observ- 
ing that the bare quantities do not depend on K .  Thus 

which leads to 
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The standard solution of these equations shows that the n -+ 0 limit of the 
correlation functions h controlled by a value g i  of gR at an infrared stable zero of 
P(gR), that is one where P'(g;;) > 0. From equations (39) and (41) we see that 
such a zero, of order e, exists for E > 0. At such a fixed point, 

G ! J ( q , w , n )  - 6-7; (45) 

A;1G!m(q ,w , ,w2rn)  - I C - ~ ;  (46) 

at fixed ( q , w ) ,  where 7; = -yi(g;). Since dimensionally [ G + , ( q , w , n ) ]  = 
I A - 1 G g m ( q , ~ , , ~ 2 , ~ ) ]  = IC-*, we see that, in the ( q , t )  representation, 

and 

G+J(q,t) - t - 7 : / z f l ( q 2 t )  ( 4 7 ) G + , ( q , t , t )  - At-'; '2f2(q2t)  (48) 

where fi and f2 are scaling functions. Solving equations (3!3-41) we then find 
explicitly that 

7; = e. (so) 
It is interesting to observe that the mntribution of figure 2(e) cancels in the final 
result for 7;. Note also that, because of equation (39). the result for 7; is valid to 
all orders in e. This has the important consequence that if we compute the exponent 
governing the time dependence of the local fluctuations 

+ ( ~ , t ) ~  = ] G , + ( q , t , i ) d d q - t - '  

the Same d-independent exponent as was found in the self-consistent approximation. 
This result may be traced back to the fact that + is not renormalized, so its 

correlation functions scale with its engineering dimension [+] = k.  This implies 
further that a general equal-time correlation function has the scaling form 

and that the random variables t ' / 2 + ( z , t )  have a joint probability distribution which 
h independent of t ,  if the z-coordinates are scaled appropriately. 

It iF also interesting to consider the scaling behaviour of the response function 
(+(z,t)&(O,t')) for 1' > 0. Denote its Fourier transform with respect to I by 
G+J(q,t, if). Since &( d, t ' )  is not renormalized for 1' > 0 ,  this will satisfy a Callan- 
Symanzik equation similar to equation (43), but with no term involving -yl(gR). 
Thus, there are no anomalous dimensions involved, and therefore, at fixed t and 1'. 
G+i - 6'. However, from dimensional analysis we may now conclude only that 

G + J ( q , t , t ' )  = @ ( s 2 t , q 2 t ' )  (53) 

where 8 is a scaling function yet to be. determined. This does not yield information 
on the behaviour as t - M at fixed 1'. In analogy with surface critical behaviour 
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[IO], we expect that this may be investigated by showing the existence of a short-time 
expansion in which renormalized fields for t‘ > 0 may be expressed in terms of 
renormalized zero-time fields. In this case, the relevant expansion will have the form 

6(d,t’)  = At’7;IZ&(z’,0)+ . . .  (54) 

G6j(q, t ,  1 ‘ )  - (t/t’)-7:l2f( 4%) 

where A is some amplitude. This would imply that, for t‘/t 1, 

(55) 

as was found in the self-consistent approximation. 
The renormalization group analysis readily generalizes to the case when m + 

0. In fact, no new renormalization constants are needed to deal with this case. 
This k because m couples to &(t = 0) in the effective action, and therefore the 
renormalization group eigenvalue of m at the m = 0 fixed point is simply related to 
y;. The simplest way to derive this relation is to observe that, for m # 0, we expect 
+(z , t )  to satisfy the scaling law (see equation (21)) 
- 

- t-‘lzQ(mta ~ z 2 / t )  (56) 

where is scaling function and a is an exponent to be determined. This scaling 
form may in fact be derived in the standard way [SI by expanding the left-hand side 
in powers of m, each coefficient being proportional to a correlation function with 
insertions of $(z,O), which satisfies a CallanSymanzik equation. However, to find 
a we. may simply observe that the first derivative with respect to m, evaluated at 
m = 0, is nothing but the q = 0 limit of C,6. Thus, from equation (47), we have 
the result 

--/ 

a = (1 -y;)/2.  (57) 

The scaling function rY may also be computed within the E expansion. We expect, for 
large values of the argument mt’, that the effects of the random initial conditions 
are unimportant, and that the order parameter relaxes with a t-’I2 p e r  law. 

4.4. Universal amplitudes 

We have shown that the moments of + ( z , t )  scale in universal manner. This leads 
us to define the amplitudes A,, of the cumulants by 

and so ont. The moments satisfy the renormalization group equations 

t ’IX~hcsc amplitudes are stricilly universal only il A = 1. In general, thy cuntain a hswr A-”/’. 
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so that, in order to evaluate Azn, we may calculate + ( z , t p  in renormalized per- 
turbation theory at the normalization scale t = IC-,, and set gR to its ked point 
value. 

Ib lowest order, we have simply 

so we see that 
€ A - - + O ( E ' ) .  

2 -  12 
In fact, if we had defined the coupling constant renormalization by AR = 

4n-244(z,n-2)2, we would have found that A, = g;/4 to all orders. However, 
the differences between this scheme and the one used in the previous section show 
up only at O(t3) in the amplitude A,. lb see this, obsewe that the E dependence of 
the perturbation expansion has the form 

where al = -3 + O(t2) and a Z  = 9 + O(c2). On renormalizing, the pole terms are 
completely removed, so that 

(63) A - gR 
2 - G + O ( d )  + O ( g 3  

evaluated at the fixed point. Thus 

Figure I Lows1 order diagram mnlnbuling 10 !he amplitude A, of the fourth cumulanl. 

Next, consider the amplitude A, of the fourth cumulant. In the Gaussian ap- 
proximation, this vanishes, and it will continue to vanish up to an order where the 
interactions begin to correlate all four propagators emerging from the 4, vertex. The 
lowest order such diagram is shown in figure 5. Note that it is O(A3) and therefore 
negative. The diagram is evaluated in appendix B, to give 

€3 + 0 ( € 4 ) .  (65) 
3 + 4 1 n 2  

f i  
A? = - 
h ~ 

If the negative sign-for A, persists in higher orders, it implies that the distribution 
of +(z,t) has a tendency to become bimodal, even though the initial distribution 
function is normal. We shall see that this tendency becomes extreme for d = 0. 
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4.5. Rigorous bounds 

The result 7; = e, valid to all orders in e, actually Saturates a rigorous bound on this 
exponent. This may be derived as follows. 

The equal time correlation function G++ has the scaling form 

Gg4(", t )  - t - (d+7; ) /2 jZ(z2 / t )  (66) 

so that 4 ( z , t ) ,  - t - ( d + t ; ) / 2 .  Multiplying the basic equation (3) by d, taking the 
expectation value, and integrating by parts, we have 

?he tint term on the right-hand side vanishes by symmetry, and the last term k 
bounded by F'. Thus 

l a -  -, 
- - @ < - + a .  
2 ai 

so that 

Yz' 2 E .  (70) 

Our renormalization group analysis indicates that for d > 2, y; = 0, so that this 
inequality is trivially satisfied. However, for d < 2, the results of the previous section 
indicate that the inequality is saturated. In that case, the amplitude fi(0) = A,, and 
we have the further bound 

A, < i. (71) 

For e small, this is not a stringent bound, but, as will be shown in the next section, it 
is saturated for d = 0. 

" A  ,-","..-"+-.."-".--" 
7.". ',,CIL"Y,.' "l,L'U'",.' 

In formulating the problem so far, we have neglected two types of terms which may 
appear in the effective action equation (10). The first type corresponds to higher order 
powers of 4 which may have been omitted from the original equation (3). It is easy to 
see that they are strongly irrelevant for the critical behaviour. For example, consider 
a term A,@ on the right-hand side of equation (3). This corresponds to a term 
A,&@ in the action equation (10). Power counting shows that iX,j = i4j-l = k-i ,  
and since 4 acquires no anomalous dimension, we conclude that the renormalization 
group eigenvalue of A, is -2 exactly. Thus, such interactions remain irrelevant for all 
d < 2. Similar considerations hold for terms in equation (3) with higher derivatives. 

I 
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Of course, this conclusion holds Only if X > 0. When it vanishes, the scaling has to 
be performed in a different manner. 

This can 
be in the form of non-zero higher cumulanu, or of non-trivial qdependence in the 
second cumulant A. The most relevant terms of these types in equation (10) are of 
the form A , J ~ ( Z , O ) ~ ~ ~ Z  and Z\,J(V6)’ddz. Dimensionally [A,] = k4-3d and 
[A2] = Thus A4 would appear to become relevant at the Gaussian fixed point 
for d < 4. Both have eigenvalue -2 when d = 2. 

First, consider the renormalization of A,. This may be defined through the value 
of (n:=, +(qi,wi)$4) at the normalization point wi = 0, qi = K. ’~b o ( A ~ ) ,  the 
integrals are the Same as for the renormalization of A, and only the combinatorial 
factors differ. We find that AY = Z,A,, where 

More interesting are the effects of modifying the initial distribution. 

K--L %-ar 

r 2r 
Z,= 1 - 6 A - + O ( A 2 r - 2 ) + ( 9 1 n 3 + 2 ) A 2 - +  +...  (72) 

Thus, defining 0, = tc(a/an)gF where gF = A ~ K ~ ~ - ~ ,  we find I 

p4= (2-3r)gp+ ( 6 g R - ( 9 1 n 3 + 2 ) g ~ + . . . ) g p t . . .  (73) I 
so that the renormalization group eigenvalue -i3p4/gy at the non-trivial fixed point 
gR = g;, g? = 0 is I 

y4 = -2 + e + o ( € ~ ) .  (74) 

We see that the effect of the interactions is to make A, less relevant. In fact, if we 
are able to ignore the O(r3) corrections, the normal distribution characterized simply 
by the second moment appears to be adequate to describe the universal properties 
all the way down to d = 0. This will be confirmed later. 

Figure 6. Lowest order dressing of lhe i d w a n t  operator (V&)z 

Next, consider the renormalization of Kz. The renormalized coupling is defined 
in terms of ( a / a q 2 ) ( ~ ( q , w , ) ~ ( - q , w z ) ( v ~ ) 2 )  at the normalization point wi = 0, 
q2 = K ~ .  ?b second order in A 2 ,  there is one new diagram, shown in figure 6, and 
evaluated in appendix B. Proceeding as before, we then find that zF = z2&, where 

- K - ‘  K - 2 r  
Z, = 1 - 3A- + 9A2- 

r €2 
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so that, in analogy with equation (73), we may derive the renormalization group 
function 

- 
pz = (2 - €)$ + (39, - ($1.3 - & ) s i +  ...) g+ . .  . (76) 

giving the renormalization group eigenvalue 

This indicates that the effect of a non-zero, but finite, correlation length in the initial 
state is highly irrelevant. 

4.7. Genenrlization to n components 

So far, we have considered the case of a single component kinglike order param- 
eter. It is sttzightfonvard to generalize the above analy& to a situation with O(n) 
symmetry, where the order parameter q5i has n componenu. The basic differential 
equation is now, in dimensionless units, 

$ii = v"i - ,$Z& (78) 

where @ = E, 4;. The random initial condition satisfies bi(z,O)dj(z',O) = 
- 2'). In the response field formalism, the w t e x  Gjd j&  may be repre- 

sented as in figure 7. In the resultant diagrams, the indices i are conserved along 
the full lines, and there is a factor of n for each closed loop. The case n -+ M is 
interesting. If the coupling constant is rescaled by A -+ A / n ,  the diagrams which 
survive in this limit are precisely those included in the self-consistent approximation. 
This is in close analogy with the situation in standard critical behaviour [SI. 

Figure 7. Representation of the interaction Mnex in the  O(n)  generalization. 

For finite n, it is straightfonvard to mmpute the relevant combinatorial factors 
up to WO loops. The relevant replacements relative to the n = 1 case are 
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Thus the renormalization group functions become 

y1 = ;( n + 2)gR - :( n + 2) In 39; + . . . 
Y, = ( n  + 2)gR - i ( n  + 2)(;ln 3 + 1 ) g i  + . . .  

(so) 
(81) 

and the k e d  point values are 

with y; = E to all orders, as before. Thus, we see that rescaling gR -+ gR/n makes 
the 1-loop results exact as n + m, and once again, we recover the results of the 
self-consistent theory in that limit. The fact that, to the order given above, the 
renormalization group functions are proportional to (n  + 2) results from the fact 
that they are linear in n and must vanish when n = -2; for in that case one may 
argue, as for the equilibrium case, that the two-point functions (44) and (44) have 
no loop corrections [ll]. 

5. Comparison with zero dimensions 

We have shown that the theory exhibits a non-trivial fixed point for d < 2, in an 
expansion in e = 2 - d, and that, in particular, the exponent 7; = E to all orders. 
It is a non-trivial test to check whether this is valid until E = 2, that is d = 0. In 
that case equation (78) becomes a system of n ordinary differential equations, whose 
solution is elementary: 

where +(0)2 = Cj 4j(0)2. Thus we see that, as t + 00, 

and that, for a random distribution of initial conditions, 

6 . .  
4i(t)4l(t) - 

in agreement, for large n, with the result equation (61), established within the E 
expansion. It is interesting to note that the amplitude is independent of the form of 
the initial distribution, indicating the universality of the amplitude A,. The fourth 
moment is also easily obtained as 
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so that the ratio of the fourth cumulant to the square of the second is 

This result illustrates the interpolation between Gaussian fluctuations (A4 = 0), for 
large n, and an extreme bimodal distribution for n = 1. 

Similarly, we may calculate the response function 

(88) 
i- a4.(1) (1 + 214(0)’)6;j  - 2 t 4 i ( O ) 4 j ( O )  

w j ( o )  - (1 + zt4(0)2)~/~ 

which, on averaging, gives 

G Q ~ ( l )  - t-”’ (89) 

corresponding to an exponent 7; = 1, which should be compared with the e- 
expansion result quat ion (49). The fact that the O ( E )  result is exact for t = 2 
may be traced to the property that it is independent of n, and is exact in the h i t  
n -t W. 

Although the model is soluble for d = 0, it is interesting to carry through the 
renormalization group analysis of the previous sections. We choose n = 1 for sim- 
plicity. Define the renormalized coupling by 

(the factor of f is for convenience), and the dimensionless renormalized coupling by 
gR = A,n-’. Then, for a given initial distribution P ( 4 ( 0 ) ) ,  we have 

We may now define the renormalization group function P(gR) = n(ag,/&) in the 
usual way, and eliminate n to express it in terms of gR. In general, this cannot be 
done analytically, but it is straightfaward to examine the neighbourhood of the fixed 
points. 

For K -+ CO, gR approaches the ultraviolet fixed point gR = 0. For small K-’, 
gR = O(n-’), so that P(gR) = -2g ,  + O(gi) ,  as expected. For n -t 0, on the 
other hand gR - 1, and as may easily be shown, this is the infrared fixed point. In 
that limit, we may write 

so that gR = 1 -t rrnP(0) + O(n’), and P(gR) = (gR- 1) + O((gR - 1)’). Notice 
that the slope of the &function at the non-trivial fixed point is universal as long as 
P( U) is analytic at U = 0. 

An interesting soluble case is when P( U) is a Cauchy distribution, that is 
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The integrals are now easy, and we find that gR = X/ (  X + n), which implies that 

= -gR(l - gR) (94) 

the simplest possible p-function one could write down with the appropriate zeros. 
Note, however, that in this case the slope of the p-function at the origin is -1 
rather than -2 as was found above. This may be uaced to the fact that, for the 
CaUUlJ " O L L L " U L , U I I (  L l l r  W L I V  1.. UII,*lll "UU ,,U, G A U L ,  *I," L l l u l ~ L u l G  L U G  DL.1II"aLu 

perturbation theory does not make sense. In fact, perturbation theory exists only when 
all moments of the initial distribution exist. Even in that case, the perturbation theory 
diverges. The integral in equation (91) may be seen as a kind of Bore1 summation of 
the expansion. 

Nevertheless, the Cauchy distribution does give the correct universal behaviour 
near the infrared k e d  point This is because, at large t ,  in fact, for all t > 0, the 
distribution of C#J( t )  is bounded, and all moments exist. The case of d = 0 therefore 
gives an interesting solvable toy model in which the structure of the renormalization 
group may be studied. 

-..AL.. Ah+-%..+:-- +La m r - - A  ---PI+ Ann.  -n+ or:"* n - A  r h n m C - m  .L,. ..+..-A-& 

6. Summary and further remarks 

We have considered the evolution of a critical system from a random initial state, 
such as that which would follow a quench from high temperature, in the regime 
when the effects of thermal fluctuations may be neglected. Mathematically, this is 
described by a nonlinear diffusion equation with random initial conditions. We found 
that for d 2 2 the nonlinearities are irrelevant, and the fluctuations at large times 
have a Gaussian distribution. For d < 2, there is a non-trivial fixed point within the E 

expansion, and the fluctuations in local quantities like have a universal behaviour. The 
variance C # J ( Z , ~ ) ~  behaves like 1 / t ,  to all orders in E, while the long time behaviour 
of the response function is governed by a non-trivial exponent y;. These results were 
confirmed both at large n, and by an exact calculation for d = 0. It is interesting to 
interpolate between the O(?) calculation and the exact results for z = 2. A simple 
PadB approach gives y; zz 0.53 for d = 1 and n = 1. Similarly, for the universal 
amplitude of the local fluctuations, we tind A, % 0.15 in this case. 

The fact that, for d < 2, the fluctuations decay more rapidly than expected on 
the basis of the Gaussian model (which would give a t - d l z  dependence for $(z, t ) , ) ,  
may be understood on the basis that the nonlinearities violate the conservation of 
the order parameter, and allow relaxation of fluctuations to progress more rapidly. 
A preliminary analysis of the case of a COnSeNed order parameter (model B [l]) 

It is somewhat disappointing that the upper critical dimension for this problem 
turns out to be two, as it renders the interesting part of the conclusions less appli- 
cable in physical situations. Nevertheless, we believe that the field theory we have 
constructed has a number of interesting features in its own right. In particular, it 
appears to have non-trivial behaviour for d = 1, unlike most equilibrium critical sys- 
tems. I f  the model turns out to be soluble by some other method (as is sugested by 
its formal analogy to the nonlinear Schrddinger equation), this would give a unique 
example of a non-trivial field theory below its upper critical dimension. 

In order to raise the upper critical d h " o n  it is necessary to consider Systems 
with other symmetries. It is not difficult to show that, in the case of a non-conserved 

L A : n n + n r  rh-r +ha ..-ml:nao-:+:n.- A n  m n +  n r , - n l ~ ~ ~ + n  +hn A a r n i r  nf I--1 R. .rr . .nt;nn~ YIu,*a,cu ,.,a, U,., 1Iullllllua..lllrl "U ,,U, au-m..'.,' L l l b  "'La, Y L  I-". U"uL"m.L".Y. 
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order parameter, the upper critical dimension d, for the relevance of disorder in the 
initial condition k always two less then the upper critical dimension for equilibrium 
fluctuations. Thus, a system described by a free energy with cubic interactions would 
have d, = 4. Such an equation would describe the population dynamics of a simple 
birth-death process. In the realm of traditional critical phenomena, another example 
would be a spin glass, for which initial conditions arc hown to play an important 
role in the low temperature phase. 

We conclude with some remarks on the case of a conserved order parameter. This 
k described by an equation of the type equation (3), with the replacement r - -ITz. 
In addition, the fluctuations in the initial state must also respect the mnservation of 
the total order parameter. This has the effect of replacing A -+ -AV2. Such 
models have been considered extensively in the low temperature phase in the study 
of spinodal decomposition [9], and the subsequent dynamics of domain growth. In 
this context, the exactly soluble large n limit was also considered [12]. 

In the case of a quench down to the critical point (at the critical concentration), it 
k straightforward to set up the field theory formulation, as in this paper. Dimensional 
analysis then indicates that the coupling constant becomes dimensionless for d = 0. 
This appears not to be very interesting. It indicates that Gaussian fluctuations persist 
for all d > 0. An analysis of the soluble case of large n confirms this. However, 
it k also possible to consider a quench at a non-critical concentration. In this case, 
the relaxation time approaches infinity at the spincdal curve. Since the symmetry 
is now broken, the system is described by a model with cubic interactions, and the 
critical dimension is raised to two. However, an analysis of the corresponding field 
theory reveals the puzzling feature that, although the theory is non-renormalizable 
for d > 2, as expected (corresponding to  the irrelevance of the interactions in the 
long time limit), exactly at d = 2 there appear to be no primitive divergences. This 
appears to make the kind of renormalization group program described in this paper 
difficult to carry out. 
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Appendix A 

We show how to estimate the strength A of the initial state randomness for the case 
of a quench from high temperatures. lb be specific, we consider an king model with 
partition function 

r 7 

. (Al) 
I J 

In order to put this into continuum form, we use the standard transformation, writing 
the quadratic term in s as a Gaussian integral over a field 4, after which the trace 
over s may be performed. Finally, a gradient expansion is performed, and the naive 
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continuum Limit is taken. When this is done, keeping track of all of all the factors, 
we find that 

- - 
where J = 1, J(x), and RZ = J-'  1, z 2 J ( x )  measures the range of the inter- 
action. Equation (A2) is brought into the standard form of a LandauGinzburg free 
energy by expanding the exponent in powers of + and rescaling 4 - (P7ad/R2)1/Z4. 
The result is a functional of the form 

F = J [ f (V4) '+  (r /4) '  + + W ]  ddx (W 

where 

If we now identify this with the effective reduced free energy used for the dynamics, 
we see that A should be given by the q = 0 component of (4(4)4(-q)) at high 
temperature p - 0. In that case, the nonlinear terms are negligible, and we see that 
that A - r-' = RZ. 

Appendix B 

We summarize the calculation of the various 2-loop Feynman integrals encountered. 
The fust is that of figure 2(e) .  It has a symmetry factor of 18, and is altogether 

(B') 
dk,dk, 

x J (-iw t k: + k; + ( q  + k, + k2)2)(-iw + 42 + 2 k ;  + 2 k ; )  

which is to be evaluated at w = 0, q = IC. Using the standard Feynman parameter 
method, this becomes 

1 8 ( 2 n A ) z ~ - 2 ~  d z  
1 

dkldk2 1 ( 2 k :  + 2k," + 2 x k 1  . k, + 2 x q .  k, + 2 x q .  k, t ( 1  - z ) q z ) 2 '  

(B2) 

Although it is possible to evaluate this directly in 2 - e dimensions, in order to extract 
the residue of the simple pole at e = 0, which comes from the large k behaviour, we 
may neglect the qdependence in the integrand. Defining k* = k, f IC,, the integral 
becomes 
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which, with a cutoff, would behave for d = 2 like 

In dimensional regularization, the factor A’ must accompany a factor of ti-2f, and 
therefore In A is replaced by K - ~ ‘ / ~ c .  The integral over z gives In 3, and putting 
these factors together we find the result quoted in equation (32). 

The contribution of figure 4(f) to G+J is 

dk,dk, 6 ( 2 ~ A ) ~ t i - ,  1 
(kf + k; + ( q  + k, + k 2 ) 2 ) 2  

in which the integral, by the same substitution, becomes 

giving the result for I, in equation (34). 
The contribution df figure 6, which represents a dressed insertion of the operator 

(V@, is 

2(2Ra)2  J (k, + $ 1 ) ~ 6 ( k ,  + k, + k3)dk,dk2dk3 

((k, + i d 2  + (IC2 + + ( k 3  + $?)2)2 

(B7) 
6(kl  + k2 + k3)dkldk2dk, 

- 3  
- 

?(, evaluate the renormalization of a, we need the derivative with respect to q2.  
This gives 

which may be evaluated by similar techniques to give the result quoted in equa- 
tion (75). 

Finally, the first non-trivial contribution to the amplitude A, (which is, in fact, 
at 3-lOop order) is shown in figure 5. This is more easily evaluated in the ( q , l )  
representation 

- 24(ZTA)3Jd1 d l ’  J d k , d k 2 d k ~ ~ - [ l + l ’ ) [ ~ ~ + ~ ~ t ~ ~ ) ~ - ( l - l ’ ~ ( ~ , + ~ ~ + ~ , ) ~ ,  (B9) 

By the rules of Gaussian integration, this k 
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where, to the required accuracy, we have taken d = 2, and 

2t t - t ' t - t '  
D = t - 1 '  22 t - t '  

1 - t ' t - 1 '  2t 

giving the final answer 

- 2 4 ( 2 ~ A ) ~  (3 +;81n 2 )  
2t2 

= 2(2t  - t ' ) ( t  + t')* (BW 

The result in equation (65) then follows on inserting the fixed point value for A. 

References 

[I] Hohenberg P C and Halperin B I 1977 RR! Mod Phys 49 435 
[2] Halperin B I, Hohenberg P C and Ma S-K I974 Phys. RR! B 10 139 
p] Jan= H K, Schaub B and Schmiumann B 1989 2 Phys. B 13 539 
141 Humayun K and Bray A J 1991 L my$. A. Math Gm 24 1915 
[SI Huse D A 1989 Php. Rfl. B 40 M4 
[6] Marlin P C, Siggia E D and Rose H H 1973 Phys Reu A 8 423 
[7j Bausch R, Januen H K and Wagner H 1976 2 Phys. B 24 113 
181 BrCzin E, Le Guillou J C and Zinn-Justin J 1976 P h e  Pmiriionr md Cdkol Ph"m0 vol 6, 

191 Gunton I. San Miguel M and Sahni P S 1983 Phare Tromiriionr md C,i~kol Phmomma wl 8, ed 

[IO] Diehl H W 1986 pharc Trmitim md Cdkal Phmomma VOI IO. ed.C Domb and 1 L Lebaviu 

[I11 Balian R and lbulouse G 1973 Phys. Rev. LetL 30 544 

ed C Domb and M S Green (New York: Academic) 

C Domb and J L Lebowilr (Nnu York Academic) 

pew Yok Academic) 

1121 Gmiglio A and Zannetii M 1989 Ewophys. h a .  10 575 , 


